9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain macrophage development, diversity and dysregulation in health and disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain macrophages include microglia in the parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space, and monocyte-derived macrophages that infiltrate the brain under various disease conditions. The vast heterogeneity of these cells has been elucidated over the last decade using revolutionary multiomics technologies. As such, we can now start to define these various macrophage populations according to their ontogeny and their diverse functional programs during brain development, homeostasis and disease pathogenesis. In this review, we first outline the critical roles played by brain macrophages during development and healthy aging. We then discuss how brain macrophages might undergo reprogramming and contribute to neurodegenerative disorders, autoimmune diseases, and glioma. Finally, we speculate about the most recent and ongoing discoveries that are prompting translational attempts to leverage brain macrophages as prognostic markers or therapeutic targets for diseases that affect the brain.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease.

          Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)(-/-) Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.

            Previously undescribed prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit markers either of proliferation or of angiogenesis and mesenchyme. Upon recurrence, tumors frequently shift toward the mesenchymal subclass. Chromosomal locations of genes distinguishing tumor subclass parallel DNA copy number differences between subclasses. Functional relevance of tumor subtype molecular signatures is suggested by the ability of cell line signatures to predict neurosphere growth. A robust two-gene prognostic model utilizing PTEN and DLL3 expression suggests that Akt and Notch signaling are hallmarks of poor prognosis versus better prognosis gliomas, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fate mapping analysis reveals that adult microglia derive from primitive macrophages.

              Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.
                Bookmark

                Author and article information

                Contributors
                Florent_ginhoux@immunol.a-star.edu.sg
                Journal
                Cell Mol Immunol
                Cell Mol Immunol
                Cellular and Molecular Immunology
                Nature Publishing Group UK (London )
                1672-7681
                2042-0226
                26 June 2023
                26 June 2023
                November 2023
                : 20
                : 11
                : 1277-1289
                Affiliations
                [1 ]GRID grid.14925.3b, ISNI 0000 0001 2284 9388, INSERM U1015, Gustave Roussy Cancer Campus, ; Villejuif, 94800 France
                [2 ]Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, ( https://ror.org/0220qvk04) Shanghai, 200025 China
                [3 ]Singapore Immunology Network, Agency for Science, Technology and Research, ( https://ror.org/03vmmgg57) Singapore, 138648 Republic of Singapore
                [4 ]Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, ( https://ror.org/00xcwps97) Singapore, 169856 Singapore
                Author information
                http://orcid.org/0000-0003-3788-4121
                http://orcid.org/0000-0002-2857-7755
                Article
                1053
                10.1038/s41423-023-01053-6
                10616292
                37365324
                dff5d266-2a02-46f5-9054-5c83d0ef15a4
                © The Author(s), under exclusive licence to CSI and USTC 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 March 2023
                : 1 June 2023
                Categories
                Review Article
                Custom metadata
                © CSI and USTC 2023

                Immunology
                microglia,macrophages,meninges,brain,inflammation,microglial cells,neuroimmunology
                Immunology
                microglia, macrophages, meninges, brain, inflammation, microglial cells, neuroimmunology

                Comments

                Comment on this article