0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal–organic framework-based S-scheme heterojunction photocatalysts

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A timely review on the recent advances of metal–organic framework-based step-scheme heterojunctions with respect to their synthesis, structures and applications is provided.

          Abstract

          Photocatalysis is a promising technology to resolve energy and environmental issues, where the design of high-efficiency photocatalysts is the central task. As an emerging family of photocatalysts, semiconducting metal–organic frameworks (MOFs) with remarkable features have demonstrated great potential in various photocatalytic fields. Compared to MOF-based photocatalysts with a single component, construction of S-scheme heterojunctions can render MOFs with enhanced charge separation, redox capacity and solar energy utilization, and thus improved photocatalytic performance. Herein, an overview of the recent advances in the design of MOF-based S-scheme heterojunctions for photocatalytic applications is provided. The basic principle of S-scheme heterojunctions is introduced. Then, three types of MOF-based S-scheme heterojunctions with different compositions are systematically summarized including MOF/non-MOF, MOF-on-MOF and MOF-derived heterojunctions. Afterwards, the enhanced performances of MOF-based S-scheme heterojunctions in hydrogen production, CO 2 reduction, C–H functionalization, H 2O 2 production and wastewater treatment are highlighted. Lastly, the current challenges and future prospects regarding the design and applications of MOF-based S-scheme heterojunctions are discussed to inspire the further development of this emerging field.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Porous, crystalline, covalent organic frameworks.

          Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterojunction Photocatalysts.

            Semiconductor-based photocatalysis attracts wide attention because of its ability to directly utilize solar energy for production of solar fuels, such as hydrogen and hydrocarbon fuels and for degradation of various pollutants. However, the efficiency of photocatalytic reactions remains low due to the fast electron-hole recombination and low light utilization. Therefore, enormous efforts have been undertaken to solve these problems. Particularly, properly engineered heterojunction photocatalysts are shown to be able to possess higher photocatalytic activity because of spatial separation of photogenerated electron-hole pairs. Here, the basic principles of various heterojunction photocatalysts are systematically discussed. Recent efforts toward the development of heterojunction photocatalysts for various photocatalytic applications are also presented and appraised. Finally, a brief summary and perspectives on the challenges and future directions in the area of heterojunction photocatalysts are also provided.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              S-Scheme Heterojunction Photocatalyst

                Bookmark

                Author and article information

                Contributors
                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                March 14 2024
                2024
                : 16
                : 11
                : 5487-5503
                Affiliations
                [1 ]School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
                [2 ]School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
                Article
                10.1039/D3NR06677K
                dfaf29a7-2787-4c4f-905b-2034901ca1be
                © 2024

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article