13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this report, an overview of the health benefits of omega-3 long-chain (≥C 20) polyunsaturated fatty acids (n-3 LC-PUFA) and recent progress in using alpha linolenic acid (ALA) rich sources derived from oilseeds to enhance productive performance, n-3 PUFA profiles and sensory properties of lamb for human consumption is reviewed. Omega-3 LC-PUFA can prevent mental health issues and chronic human disorders including cancer, cardiovascular and inflammatory diseases. The median amount of n-3 LC-PUFA consumption is generally lacking in Western diets. More attention is now being paid to the use of innovative nutritional strategies to improve PUFA content in ruminants, which could subsequently increase the content of health-benefitting n-3 LC-PUFA for human consumption. The richest sources of dietary n-3 LC-PUFA are derived from marine products, while forage and oilseeds such as flaxseed, canola, and their oils are abundant in ALA. Numerous studies have shown that dietary ALA increases n-3 LC-PUFA levels of edible tissues. However, other studies concluded that ALA rich supplementation led to no differences in tissue FA profiles because of extensive biohydrogenation of dietary ALA, limited conversion from ALA to n-3 LC-PUFA and low incorporation of n-3 LC-PUFA into edible tissues. Generally, the inclusion of ALA rich sources in lamb diets potentially increases ALA content in lamb. It is proposed that supplementing ruminants with ALA-rich sources at or below 6% can promote n-3 PUFA profiles in lamb and is unlikely to have negative effects on feed intake, growth, carcass and sensory properties.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: not found
          • Article: not found

          Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem.

            Recent advances in chromatographic identification of CLA isomers, combined with interest in their possible properties in promoting human health (e.g., cancer prevention, decreased atherosclerosis, improved immune response) and animal performance (e.g., body composition, regulation of milk fat synthesis, milk production), has renewed interest in biohydrogenation and its regulation in the rumen. Conventional pathways of biohydrogenation traditionally ignored minor fatty acid intermediates, which led to the persistence of oversimplified pathways over the decades. Recent work is now being directed toward accounting for all possible trans-18:1 and CLA products formed, including the discovery of novel bioactive intermediates. Modern microbial genetics and molecular phylogenetic techniques for identifying and classifying microorganisms by their small-subunit rRNA gene sequences have advanced knowledge of the role and contribution of specific microbial species in the process of biohydrogenation. With new insights into the pathways of biohydrogenation now available, several attempts have been made at modeling the pathway to predict ruminal flows of unsaturated fatty acids and biohydrogenation intermediates across a range of ruminal conditions. After a brief historical account of major past accomplishments documenting biohydrogenation, this review summarizes recent advances in 4 major areas of biohydrogenation: the microorganisms involved, identification of intermediates, the biochemistry of key enzymes, and the development and testing of mathematical models to predict biohydrogenation outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence.

              The UK dietary guidelines for cardiovascular disease acknowledge the importance of long-chain omega-3 polyunsaturated fatty acids (PUFA) - a component of fish oils - in reducing heart disease risk. At the time, it was recommended that the average n-3 PUFA intake should be increased from 0.1 to 0.2 g day(-1). However, since the publication of these guidelines, a plethora of evidence relating to the beneficial effects of n-3 PUFAs, in areas other than heart disease, has emerged. The majority of intervention studies, which found associations between various conditions and the intake of fish oils or their derivatives, used n-3 intakes well above the 0.2 g day(-1) recommended by Committee on Medical Aspects of Food Policy (COMA). Furthermore, in 2004, the Food Standards Agency changed its advice on oil-rich fish creating a discrepancy between the levels of n-3 PUFA implied by the new advice and the 1994 COMA guideline. This review will examine published evidence from observational and intervention studies relating to the health effects of n-3 PUFAs, and discuss whether the current UK recommendation for long-chain n-3 PUFA needs to be revisited.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Anim Sci
                Vet Anim Sci
                Veterinary and Animal Science
                Elsevier
                2451-943X
                02 August 2018
                December 2018
                02 August 2018
                : 6
                : 29-40
                Affiliations
                [a ]Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
                [b ]National Institute of Animal Science, Hanoi 129909, Viet Nam
                [c ]College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
                [d ]CSIRO Oceans & Atmosphere, PO Box 1538, Hobart, TAS 7001, Australia
                Author notes
                [* ]Corresponding author. aduli.malauaduli@ 123456jcu.edu.au
                Article
                S2451-943X(17)30155-2
                10.1016/j.vas.2018.08.001
                7386694
                32734050
                dfa628b0-0d75-4221-b3be-09587fe620f2
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 10 October 2017
                : 1 March 2018
                : 1 August 2018
                Categories
                Article

                alpha linolenic acid,omega-3 long-chain polyunsaturated fatty acids,lamb,canola,flaxseed,dietary supplementation

                Comments

                Comment on this article