0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.

          Keap1-Nrf2-ARE signaling plays a significant role in protecting cells from endogenous and exogenous stresses. The development of Nrf2 knockout mice has provided key insights into the toxicological importance of this pathway. These mice are more sensitive to the hepatic, pulmonary, ovarian, and neurotoxic consequences of acute exposures to environmental agents and drugs, inflammatory stresses, as well as chronic exposures to cigarette smoke and other carcinogens. Under quiescent conditions, the transcription factor Nrf2 interacts with the actin-anchored protein Keap1, largely localized in the cytoplasm. This quenching interaction maintains low basal expression of Nrf2-regulated genes. However, upon recognition of chemical signals imparted by oxidative and electrophilic molecules, Nrf2 is released from Keap1, escapes proteasomal degradation, translocates to the nucleus, and transactivates the expression of several dozen cytoprotective genes that enhance cell survival. This review highlights the key elements in this adaptive response to protection against acute and chronic cell injury provoked by environmental stresses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.

            A transcription factor, Cbfa1, which belongs to the runt-domain gene family, is expressed restrictively in fetal development. To elucidate the function of Cbfa1, we generated mice with a mutated Cbfa1 locus. Mice with a homozygous mutation in Cbfa1 died just after birth without breathing. Examination of their skeletal systems showed a complete lack of ossification. Although immature osteoblasts, which expressed alkaline phophatase weakly but not Osteopontin and Osteocalcin, and a few immature osteoclasts appeared at the perichondrial region, neither vascular nor mesenchymal cell invasion was observed in the cartilage. Therefore, our data suggest that both intramembranous and endochondral ossification were completely blocked, owing to the maturational arrest of osteoblasts in the mutant mice, and demonstrate that Cbfa1 plays an essential role in osteogenesis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1 1This review is based on the licentiate thesis “Thioredoxin reductase—interactions with the redox active compounds 1-chloro-2,4-dinitrobenzene and lipoic acid” by Jonas Nordberg, 2001, Karolinska Institute, Stockholm, ISBN 91-631-1064-4.

                Bookmark

                Author and article information

                Journal
                Molecular and Cellular Biochemistry
                Mol Cell Biochem
                Springer Science and Business Media LLC
                0300-8177
                1573-4919
                August 2016
                July 19 2016
                August 2016
                : 419
                : 1-2
                : 157-163
                Article
                10.1007/s11010-016-2760-8
                27431005
                df6279e3-0503-454f-ac88-9b21a056e825
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article