Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Cell-based therapy represents a new frontier in the treatment of a wide variety of human diseases traditionally associated with morbidity outcomes, including those involving inflammation, autoimmunity, tissue damage, and cancer. However, the use of mesenchymal stem cells (MSCs) to treat multiple myeloma (MM) bone disease has raised concerns. Specifically, evidence has shown that infused MSCs might support tumor growth and metastasis.

          Methods

          In this study, we used a standard disseminated MM model in mice to identify the in vivo effects of intravenous MSC infusion. In addition, a series of in vitro co-culture assays were preformed to explore whether Fas/Fas ligand (Fas-L) is involved in the inhibitory effects of MSCs on MM cells.

          Results

          In the MM mouse model, treatment of MSCs with highly expressed Fas ligand (Fas-L high MSCs) showed remarkable inhibitory effects on MM indenization in terms of extending the mouse survival rate and inhibiting tumor growth, bone resorption in the lumbus and collum femoris, and MM cell metastasis in the lungs and kidneys. In addition, reduced proliferation and increased apoptosis of MM cells was observed when co-cultured with Fas-L high MSCs in vitro. Furthermore, mechanistically, the binding between Fas and Fas-L significantly induced apoptosis in MM cells, as evidenced through an increase in the expression of apoptosis marker and Fas in MM cells. In contrast, Fas-L null MSCs promote MM growth.

          Conclusions

          These data suggest that Fas/Fas-L-induced MM apoptosis plays a crucial role in the MSC-based inhibition of MM growth. Although whether MSCs inhibit or promote cancer growth remains controversial, the levels of Fas-L expression in MSCs determine, at least partially, the effects of MSCs on MM cell growth.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal Stem Cell-Based Tissue Regeneration is Governed by Recipient T Lymphocyte via IFN-γ and TNF-α

          Stem cell-based regenerative medicine is a promising approach for tissue reconstruction. Here, we showed that pro-inflammatory T cells in the recipients inhibited bone marrow mesenchymal stem cell (BMMSC)-mediated bone formation via T helper 1 (Th1) cytokine interferon (IFN)-γ induced down-regulation of runt-related transcription factor 2 (Runx-2) pathway and tumor necrosis factor (TNF)-α-regulated BMMSC apoptosis. TNF-α converted IFN-γ-activated non-apoptotic Fas to a caspase 3/8-associated apoptotic signaling in BMMSCs through inhibition of nuclear factor kappa B (NFκB), resulting in BMMSC apoptosis. Conversely, reduction of IFN-γ and TNF-α levels by systemic infusion of Foxp3+ regulatory T cells (Tregs) markedly improved BMMSC-based bone regeneration and calvarial defect repair in C57BL6 mice. Furthermore, we showed that local administration of aspirin reduced levels of IFN-γ and TNF-α at the implantation site and significantly improved BMMSC-based calvarial defect repair. These data collectively uncover a previously unrecognized role of recipient T cells in BMMSC-based tissue engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma

            Emerging evidence suggests that both human stem cells and mature stromal cells can play an important role in the development and growth of human malignancies. In contrast to these tumor-promoting properties, we observed that in an in vivo model of Kaposi's sarcoma (KS), intravenously (i.v.) injected human mesenchymal stem cells (MSCs) home to sites of tumorigenesis and potently inhibit tumor growth. We further show that human MSCs can inhibit the in vitro activation of the Akt protein kinase within some but not all tumor and primary cell lines. The inhibition of Akt activity requires the MSCs to make direct cell–cell contact and can be inhibited by a neutralizing antibody against E-cadherin. We further demonstrate that in vivo, Akt activation within KS cells is potently down-regulated in areas adjacent to MSC infiltration. Finally, the in vivo tumor-suppressive effects of MSCs correlates with their ability to inhibit target cell Akt activity, and KS tumors engineered to express a constitutively activated Akt construct are no longer sensitive to i.v. MSC administration. These results suggest that in contrast to other stem cells or normal stromal cells, MSCs possess intrinsic antineoplastic properties and that this stem cell population might be of particular utility for treating those human malignancies characterized by dysregulated Akt.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family.

              The Fas antigen (Fas) belongs to the tumor necrosis factor (TNF)/nerve growth factor receptor family, and it mediates apoptosis. Using a soluble form of mouse Fas, prepared by fusion with human immunoglobulin Fc, Fas ligand was detected on the cell surface of a cytotoxic T cell hybridoma, PC60-d10S. A cell population that highly expresses Fas ligand was sorted using a fluorescence-activated cell sorter, and its cDNA was isolated from the sorted cells by expression cloning. The amino acid sequence indicated that Fas ligand is a type II transmembrane protein that belongs to the TNF family. The recombinant Fas ligand expressed in COS cells induced apoptosis in Fas-expressing target cells. Northern hybridization revealed that Fas ligand is expressed in activated splenocytes and thymocytes, consistent with its involvement in T cell-mediated cytotoxicity and in several nonlymphoid tissues, such as testis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central
                1757-6512
                2013
                11 September 2013
                : 4
                : 5
                : 111
                Affiliations
                [1 ]Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CA 90033, USA
                [2 ]Section of Removable Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka 812-8582, Japan
                [3 ]Translational Research Team, School of Stomatology, Fourth Military Medical University, Xi’an 710032, Shaanxi, P.R. China
                [4 ]Department of Hematology and Laboratory Medicine, Osaka Red Cross Hospital, Osaka 543-8555, Japan
                [5 ]Current address: Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Kita-ku 700-8525, Japan
                [6 ]Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi’an 710032, Shaanxi, P.R. China
                Article
                scrt322
                10.1186/scrt322
                3854680
                24025590
                df36fc15-6712-417d-ba6f-cd943eef115b
                Copyright © 2013 Atsuta et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 May 2013
                : 10 August 2013
                : 6 September 2013
                Categories
                Research

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content703

                Cited by23

                Most referenced authors608