1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of phenol formaldehyde-associated microplastics on soil microbial community, assembly, and functioning.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing investigations explore the effects of plastic pollutants on bacterial communities, diversity, and functioning in various ecosystems. However, the impact of microplastics (MPs) on the eukaryotic community, microbial assemblages, and interactions is still limited. Here, we investigated bacterial and micro-eukaryotic communities and functioning in soils with different concentrations of phenol formaldehyde-associated MPs (PF-MPs), and revealed the factors, such as soil properties, microbial community assembly, and interactions between microbes, influencing them. Our results showed that a high concentration (1%) of PF-MPs decreased the microbial interactions and the contribution of deterministic processes to the community assembly of microbes, and consequently changed the communities of bacteria, but not eukaryotes. A significant and negative relationship was determined between N2O emission rate and functional genes related to nitrification, indicating that the competitive interactions between functional microbes would affect the nitrogen cycling of soil ecosystem. We further found that vegetable biomass weakly decreased in treatments with a higher concentration of PF-MPs and positively related to the diversity of micro-eukaryotic communities and functional diversity of bacterial communities. These results suggest that a high concentration of the PF-MPs would influence crop growth by changing microbial communities, interactions, and eukaryotic and functional diversity. Our findings provide important evidence for agriculture management of phenol formaldehyde and suggest that we must consider their threats to microbial community compositions, diversity, and assemblage in soils due to the accumulation of PF-MPs widely used in the field.

          Related collections

          Author and article information

          Journal
          J Hazard Mater
          Journal of hazardous materials
          Elsevier BV
          1873-3336
          0304-3894
          Feb 05 2023
          : 443
          : Pt B
          Affiliations
          [1 ] Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China. Electronic address: hli@iue.ac.cn.
          [2 ] Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
          [3 ] Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
          [4 ] Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China. Electronic address: jqsu@iue.ac.cn.
          Article
          S0304-3894(22)02082-9
          10.1016/j.jhazmat.2022.130288
          36335899
          ded64e15-fead-4022-990e-28a9721d46b9
          History

          Carbon and nitrogen cycling,QMEC chip,Phenol formaldehyde,Microplastic,Micro-eukaryote,Functional genes

          Comments

          Comment on this article