27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK activators in the treatment of MM.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The stress-activated protein kinase subfamily of c-Jun kinases.

          The mitogen-activated protein (MAP) kinases Erk-1 and Erk-2 are proline-directed kinases that are themselves activated through concomitant phosphorylation of tyrosine and threonine residues. The kinase p54 (M(r) 54,000), which was first isolated from cycloheximide-treated rats, is proline-directed like Erks-1/2, and requires both Tyr and Ser/Thr phosphorylation for activity. p54 is, however, distinct from Erks-1/2 in its substrate specificity, being unable to phosphorylate pp90rsk but more active in phosphorylating the c-Jun transactivation domain. Molecular cloning of p54 reveals a unique subfamily of extracellularly regulated kinases. Although they are 40-45% identical in sequence to Erks-1/2, unlike Erks-1/2 the p54s are only poorly activated in most cells by mitogens or phorbol esters. However, p54s are the principal c-Jun N-terminal kinases activated by cellular stress and tumour necrosis factor (TNF)-alpha, hence they are designated stress-activated protein kinases, or SAPKs. SAPKs are also activated by sphingomyelinase, which elicits a subset of cellular responses to TNF-alpha (ref. 9). SAPKs therefore define a new TNF-alpha and stress-activated signalling pathway, possibly initiated by sphingomyelin-based second messengers, which regulates the activity of c-Jun.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors.

            In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53-HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of cell cycle progression by c-Jun is p53 dependent.

              The c-jun proto-oncogene encodes a component of the mitogen-inducible immediate-early transcription factor AP-1 and has been implicated as a positive regulator of cell proliferation and G1-to-S-phase progression. Here we report that fibroblasts derived from c-jun-/- mouse fetuses exhibit a severe proliferation defect and undergo a prolonged crisis before spontaneous immortalization. The cyclin D1- and cyclin E-dependent kinases (CDKs) and transcription factor E2F are poorly activated, resulting in inefficient G1-to-S-phase progression. Furthermore, the absence of c-Jun results in elevated expression of the tumor suppressor gene p53 and its target gene, the CDK inhibitor p21, whereas overexpression of c-Jun represses p53 and p21 expression and accelerates cell proliferation. Surprisingly, protein stabilization, the common mechanism of p53 regulation, is not involved in up-regulation of p53 in c-jun-/- fibroblasts. Rather, c-Jun regulates transcription of p53 negatively by direct binding to a variant AP-1 site in the p53 promoter. Importantly, deletion of p53 abrogates all defects of cells lacking c-Jun in cell cycle progression, proliferation, immortalization, and activation of G1 CDKs and E2F. These results demonstrate that an essential, rate-limiting function of c-Jun in fibroblast proliferation is negative regulation of p53 expression, and establish a mechanistic link between c-Jun-dependent mitogenic signaling and cell-cycle regulation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                20 January 2012
                : 7
                : 1
                : e30215
                Affiliations
                [1 ]Division of Molecular and Cellular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
                [2 ]Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
                [3 ]Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China
                [4 ]Princess Margaret Hospital, Ontario Cancer Institute, Toronto, Ontario, Canada
                [5 ]Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
                [6 ]Department of Laboratory Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
                Penn State Hershey Cancer Institute, United States of America
                Author notes

                Conceived and designed the experiments: MS HC. Performed the experiments: MS HJ YY XZ XW. Analyzed the data: MS HC. Contributed reagents/materials/analysis tools: LQ AS. Wrote the paper: MS HC. Read and approved the final manuscript: HC.

                Article
                PONE-D-11-15845
                10.1371/journal.pone.0030215
                3262803
                22276160
                dec5f559-ba63-4cd6-a67f-65b23ca2a874
                Saha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 August 2011
                : 12 December 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                Medicine
                Hematology
                Hematologic Cancers and Related Disorders
                Plasma Cell Disorders
                Oncology
                Cancer Treatment

                Uncategorized
                Uncategorized

                Comments

                Comment on this article