49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A post-classical theory of enamel biomineralization… and why we need one

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Orai1 is an essential pore subunit of the CRAC channel.

          Stimulation of immune cells causes depletion of Ca2+ from endoplasmic reticulum (ER) stores, thereby triggering sustained Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels, an essential signal for lymphocyte activation and proliferation. Recent evidence indicates that activation of CRAC current is initiated by STIM proteins, which sense ER Ca2+ levels through an EF-hand located in the ER lumen and relocalize upon store depletion into puncta closely associated with the plasma membrane. We and others recently identified Drosophila Orai and human Orai1 (also called TMEM142A) as critical components of store-operated Ca2+ entry downstream of STIM. Combined overexpression of Orai and Stim in Drosophila cells, or Orai1 and STIM1 in mammalian cells, leads to a marked increase in CRAC current. However, these experiments did not establish whether Orai is an essential intracellular link between STIM and the CRAC channel, an accessory protein in the plasma membrane, or an actual pore subunit. Here we show that Orai1 is a plasma membrane protein, and that CRAC channel function is sensitive to mutation of two conserved acidic residues in the transmembrane segments. E106D and E190Q substitutions in transmembrane helices 1 and 3, respectively, diminish Ca2+ influx, increase current carried by monovalent cations, and render the channel permeable to Cs+. These changes in ion selectivity provide strong evidence that Orai1 is a pore subunit of the CRAC channel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transient amorphous calcium phosphate in forming enamel.

            Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using X-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence of transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia.

              Defects in the development or activation of T cells result in immunodeficiency associated with severe infections early in life. T-cell activation requires Ca2+ influx through Ca2+-release activated Ca2+ (CRAC) channels encoded by the gene ORAI1. Investigation of the genetic causes and the clinical phenotype of immunodeficiency in patients with impaired Ca2+ influx and CRAC channel function. DNA sequence analysis for mutations in the genes ORAI1, ORAI2, ORAI3, and stromal interaction molecule (STIM) 1 and 2, as well as mRNA and protein expression analysis of ORAI1 in immunodeficient patients. Immunohistochemical analysis of ORAI1 tissue distribution in healthy human donors. We identified mutations in ORAI1 in patients from 2 unrelated families. One patient is homozygous for a frameshift nonsense mutation in ORAI1 (ORAI1-A88SfsX25), and a second patient is compound heterozygous for 2 missense mutations in ORAI1 (ORAI1-A103E/L194P). All 3 mutations abolish ORAI1 expression and impair Ca2+ influx and CRAC channel function. The clinical syndrome associated with ORAI1 deficiency is characterized by immunodeficiency with a defect in the function but not in the development of lymphocytes, congenital myopathy, and anhydrotic ectodermal dysplasia with a defect in dental enamel calcification. In contrast with the limited clinical phenotype, we found ORAI1 protein expression in a wide variety of cell types and organs. Ca2+ influx through ORAI1 is crucial for lymphocyte function in vivo. Despite almost ubiquitous ORAI1 expression, the channel has a nonredundant role in only a few cell types judging from the limited clinical phenotype in ORAI1-deficient patients.
                Bookmark

                Author and article information

                Journal
                Int J Oral Sci
                Int J Oral Sci
                International Journal of Oral Science
                Nature Publishing Group
                1674-2818
                2049-3169
                September 2012
                21 September 2012
                1 September 2012
                : 4
                : 3
                : 129-134
                Affiliations
                [1 ]Department of Biologic and Materials Sciences, University of Michigan School of Dentistry , 1210 Eisenhower Place, Ann Arbor, USA
                [2 ]Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University , Montreal, Canada
                Author notes
                [* ]Department of Biologic and Materials Sciences, University of Michigan Dental Research Laboratory , 1210 Eisenhower P1, Ann Arbor, MI 48108, USA. E-mail: jsimmer@ 123456umich.edu
                Article
                ijos201259
                10.1038/ijos.2012.59
                3464985
                22996272
                debfcd0d-4ecf-4f6c-8b5e-2f56dc47cc9c
                Copyright © 2012 West China School of Stomatology

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 31 July 2012
                : 15 August 2012
                Categories
                Review

                Dentistry
                enamelin,tooth,amelogenin,mineralization front,ameloblastin
                Dentistry
                enamelin, tooth, amelogenin, mineralization front, ameloblastin

                Comments

                Comment on this article