9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs), such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.

          Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion. In recent years lanthanide-doped upconversion nanocrystals have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These techniques offer low autofluorescence background, large anti-Stokes shifts, sharp emission bandwidths, high resistance to photobleaching, and high penetration depth and temporal resolution. Such techniques also show potential for improving the selectivity and sensitivity of conventional methods. They also pave the way for high throughput screening and miniaturization. This tutorial review focuses on the recent development of various synthetic approaches and possibilities for chemical tuning of upconversion properties, as well as giving an overview of biological applications of these luminescent nanocrystals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Upconversion nanophosphors for small-animal imaging.

            Rare-earth upconversion nanophosphors (UCNPs), when excited by continuous-wave near-infrared light, exhibit a unique narrow photoluminescence with higher energy. Such special upconversion luminescence makes UCNPs promising as bioimaging probes with attractive features, such as no auto-fluorescence from biological samples and a large penetration depth. As a result, UCNPs have emerged as novel imaging agents for small animals. In this critical review, recent reports regarding the synthesis of water-soluble UCNPs and their surface modification and bioconjugation chemistry are summarized. The applications of UCNPs for small-animal imaging, including tumor-targeted imaging, lymphatic imaging, vascular imaging and cell tracking are reviewed in detail. The exploration of UCNPs as multifunctional nanoscale carriers for integrated imaging and therapy is also presented. The biodistribution and toxicology of UCNPs are further described. Finally, we discuss the challenges and opportunities in the development of UCNP-based nanoplatforms for small-animal imaging (276 references). This journal is © The Royal Society of Chemistry 2012
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              SEMICONDUCTOR NANOWIRES AND NANOTUBES

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                25 December 2014
                March 2015
                : 5
                : 1
                : 1-25
                Affiliations
                [1 ]Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China; E-Mails: 460653533@ 123456njtech.edu.cn (H.C.); 823184209@ 123456njtech.edu.cn (B.Z.); liubotong201304@ 123456gmail.com (B.L.); xu_shuilin@ 123456njtech.edu.cn (S.X.); iamnren@ 123456njtech.edu.cn (N.R.); iamxjxie@ 123456njtech.edu.cn (X.X.)
                [2 ]Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; E-Mail: 15050528303@ 123456163.com
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: iamlhuang@ 123456njtech.edu.cn (L.H.); iamwhuang@ 123456njtech.edu.cn & iamwhuang@ 123456njupt.edu.cn (W.H.).
                Article
                nanomaterials-05-00001
                10.3390/nano5010001
                5312847
                de7d0a27-08eb-430d-b86b-cdcdb2e69e80
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 November 2014
                : 10 December 2014
                Categories
                Review

                rare earth,nanocrystal,upconversion,synthesis,surface modification

                Comments

                Comment on this article