11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Genetic compensation: A phenomenon in search of mechanisms

          Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel.

            TRPML1 (mucolipin 1, also known as MCOLN1) is predicted to be an intracellular late endosomal and lysosomal ion channel protein that belongs to the mucolipin subfamily of transient receptor potential (TRP) proteins. Mutations in the human TRPML1 gene cause mucolipidosis type IV disease (ML4). ML4 patients have motor impairment, mental retardation, retinal degeneration and iron-deficiency anaemia. Because aberrant iron metabolism may cause neural and retinal degeneration, it may be a primary cause of ML4 phenotypes. In most mammalian cells, release of iron from endosomes and lysosomes after iron uptake by endocytosis of Fe(3+)-bound transferrin receptors, or after lysosomal degradation of ferritin-iron complexes and autophagic ingestion of iron-containing macromolecules, is the chief source of cellular iron. The divalent metal transporter protein DMT1 (also known as SLC11A2) is the only endosomal Fe(2+) transporter known at present and it is highly expressed in erythroid precursors. Genetic studies, however, suggest the existence of a DMT1-independent endosomal and lysosomal Fe(2+) transport protein. By measuring radiolabelled iron uptake, by monitoring the levels of cytosolic and intralysosomal iron and by directly patch-clamping the late endosomal and lysosomal membrane, here we show that TRPML1 functions as a Fe(2+) permeable channel in late endosomes and lysosomes. ML4 mutations are shown to impair the ability of TRPML1 to permeate Fe(2+) at varying degrees, which correlate well with the disease severity. A comparison of TRPML1(-/- )ML4 and control human skin fibroblasts showed a reduction in cytosolic Fe(2+) levels, an increase in intralysosomal Fe(2+) levels and an accumulation of lipofuscin-like molecules in TRPML1(-/-) cells. We propose that TRPML1 mediates a mechanism by which Fe(2+) is released from late endosomes and lysosomes. Our results indicate that impaired iron transport may contribute to both haematological and degenerative symptoms of ML4 patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher's disease.

              Gaucher's disease, the most prevalent of the sphingolipid storage disorders, is caused by a deficiency of the enzyme glucocerebrosidase (glucosylceramidase). Enzyme replacement was proposed as a therapeutic strategy for this disorder in 1966. To assess the clinical effectiveness of this approach, we infused macrophage-targeted human placental glucocerebrosidase (60 IU per kilogram of body weight every 2 weeks for 9 to 12 months) into 12 patients with type 1 Gaucher's disease who had intact spleens. The frequency of infusions was increased to once a week in two patients (children) during part of the trial because they had clinically aggressive disease. The hemoglobin concentration increased in all 12 patients, and the platelet count in 7. Serum acid phosphatase activity decreased in 10 patients during the trial, and the plasma glucocerebroside level in 9. Splenic volume decreased in all patients after six months of treatment, and hepatic volume in five. Early signs of skeletal improvements were seen in three patients. The enzyme infusions were well tolerated, and no antibody to the exogenous enzyme developed. Intravenous administration of macrophage-targeted glucocerebrosidase produces objective clinical improvement in patients with type 1 Gaucher's disease. The hematologic and visceral responses to enzyme replacement develop more rapidly than the skeletal response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Biosci
                Front Mol Biosci
                Front. Mol. Biosci.
                Frontiers in Molecular Biosciences
                Frontiers Media S.A.
                2296-889X
                15 April 2020
                2020
                : 7
                : 57
                Affiliations
                Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, NY, United States
                Author notes

                Edited by: Angela Gritti, San Raffaele Scientific Institute (IRCCS), Italy

                Reviewed by: Alessandro Fraldi, Telethon Institute of Genetics and Medicine, Italy; Maria Irene Givogri, The University of Illinois at Chicago, United States

                *Correspondence: Daesung Shin, daesungs@ 123456buffalo.edu

                These authors have contributed equally to this work

                This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences

                Article
                10.3389/fmolb.2020.00057
                7174556
                32351971
                de61292a-8a22-47dc-b67a-f468c33a936a
                Copyright © 2020 Favret, Weinstock, Feltri and Shin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 January 2020
                : 20 March 2020
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 357, Pages: 27, Words: 0
                Categories
                Molecular Biosciences
                Review

                lysosomal diseases,preclinical mouse models,hsct,enzyme replacement therapy,gene therapy,chaperone therapy,substrate reduction therapy

                Comments

                Comment on this article