95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity Translated title: Cocaína y psicoestimulantes tipo anfetamina: circuitos neuronales y neuroplasticidad glutamatérgica Translated title: Cocaïne et psychostimulants amphétaminoïdes: circuits neuronaux et neuroplasticité du glutamate

      research-article
      , PhD *
      Dialogues in Clinical Neuroscience
      Les Laboratoires Servier
      cocaine, glutamate, amphetamine, accumbens, prefrontal cortex, dopamine

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the pharmacology of amphetamine-like psychostimulants at dopamine transporters is well understood, addiction to this class of drugs has proven difficult to deal with. The reason for this disconnection is that while the molecular mechanism of amphetamine action is critical to reinforce drug use, it is only the first step in a sequence of widespread neuroplastic events in brain circuitry. This review outlines the affect of psychostimulants on mesocorticolimbic dopamine projections that mediate their reinforcing effect, and how this action ultimately leads to enduring pathological neuroplasticity in glutamatergic projections from the prefrontal cortex to the nucleus accumbens. Molecular neuroadaptations induced by psychostimulant abuse are described in glutamate neurotransmission, and from this information potential pharmacotherapeutic targets are identified, based upon reversing or countermanding psychostimulant-induced neuroplasticity.

          Translated abstract

          Aunque es bien conocida la farmacología de los psicoestimulantes tipo anfetamina a nivel de los transportadores de dopamina, ha sido difícil abordar la adicción a esta clase de drogas. La razón de esta discordancia se explica porque si bien el mecanismo molecular de la acción de la anfetamina es crítico para reforzar el uso de la droga, éste representa sólo el primer paso en una secuencia de numerosos acontecimientos neuroplásticos en los circuitos cerebrales. Esta revisión resume el efecto de los psicoestimulantes en las proyecciones mesocorticolímbicas de dopamina que median el efecto de refuerzo, y cómo esta acción en último término conduce a una neuroplasticidad patológica permanente en las proyecciones glutamatérgicas desde la corteza prefrontal hasta el núcleo accumbens. Se describen las neuroadaptaciones moleculares inducidas por el abuso de psicoestimulantes en la neurotransmisión glutamatérgica, y a partir de esta información se identifican potenciales blancos farmacoterapéuticos, en base a las modificaciones en la neuroplasticidad inducida por psicoestimulantes.

          Translated abstract

          En dépit d'une bonne compréhension de la pharmacologie des psychostimulants amphétaminoïdes au niveau des transporteurs de la dopamine, il semble difficile de faire face à l'addiction à cette classe de médicaments. Cette discordance s'explique ainsi : si le mécanisme moléculaire de l'action amphétaminique est essentiel pour renforcer l'action du médicament, il ne représente qu'une première étape dans une succession de nombreux événements neuroplastiques dans le circuit cérébral. Cette revue souligne l'effet des psychostimulants sur les projections méso-cortico-limbiques dopaminergiques qui médient l'effet de consolidation et explique comment cette action mène finalement à une neuroplasticité pathologique persistante dans les projections glutamatergiques, du cortex préfrontal au noyau accumbens. Les neuroadaptations moléculaires induites par l'abus des psychostimulants sont décrites en ce qui concerne la neurotransmission du glutamate, et des cibles pharmacothérapeutiques potentielles sont identifiées à partir de ces informations, basées sur la neuroplasticité réversible ou annulable induite par les psychostimulants.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of addiction: a pathology of motivation and choice.

          A primary behavioral pathology in drug addiction is the overpowering motivational strength and decreased ability to control the desire to obtain drugs. In this review the authors explore how advances in neurobiology are approaching an understanding of the cellular and circuitry underpinnings of addiction, and they describe the novel pharmacotherapeutic targets emerging from this understanding. Findings from neuroimaging of addicts are integrated with cellular studies in animal models of drug seeking. While dopamine is critical for acute reward and initiation of addiction, end-stage addiction results primarily from cellular adaptations in anterior cingulate and orbitofrontal glutamatergic projections to the nucleus accumbens. Pathophysiological plasticity in excitatory transmission reduces the capacity of the prefrontal cortex to initiate behaviors in response to biological rewards and to provide executive control over drug seeking. Simultaneously, the prefrontal cortex is hyperresponsive to stimuli predicting drug availability, resulting in supraphysiological glutamatergic drive in the nucleus accumbens, where excitatory synapses have a reduced capacity to regulate neurotransmission. Cellular adaptations in prefrontal glutamatergic innervation of the accumbens promote the compulsive character of drug seeking in addicts by decreasing the value of natural rewards, diminishing cognitive control (choice), and enhancing glutamatergic drive in response to drug-associated stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate uptake.

            Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Getting formal with dopamine and reward.

              Recent neurophysiological studies reveal that neurons in certain brain structures carry specific signals about past and future rewards. Dopamine neurons display a short-latency, phasic reward signal indicating the difference between actual and predicted rewards. The signal is useful for enhancing neuronal processing and learning behavioral reactions. It is distinctly different from dopamine's tonic enabling of numerous behavioral processes. Neurons in the striatum, frontal cortex, and amygdala also process reward information but provide more differentiated information for identifying and anticipating rewards and organizing goal-directed behavior. The different reward signals have complementary functions, and the optimal use of rewards in voluntary behavior would benefit from interactions between the signals. Addictive psychostimulant drugs may exert their action by amplifying the dopamine reward signal.
                Bookmark

                Author and article information

                Contributors
                Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
                Journal
                Dialogues Clin Neurosci
                Dialogues Clin Neurosci
                Dialogues in Clinical Neuroscience
                Les Laboratoires Servier (France )
                1294-8322
                1958-5969
                December 2007
                December 2007
                : 9
                : 4
                : 389-397
                Affiliations
                Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
                Author notes
                Article
                10.31887/DCNS.2007.9.4/PKALIVAS
                3202508
                18286799
                de535f7b-113e-4890-89f6-06622f826184
                Copyright: © 2007 LLS

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Translational Research

                Neurosciences
                accumbens,cocaine,prefrontal cortex,glutamate,dopamine,amphetamine
                Neurosciences
                accumbens, cocaine, prefrontal cortex, glutamate, dopamine, amphetamine

                Comments

                Comment on this article