80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Autophagy Contributes to Ischemic Postconditioning-Induced Neuroprotection against Focal Cerebral Ischemia in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ischemic postconditioning (IPOC), or relief of ischemia in a stuttered manner, has emerged as an innovative treatment strategy to reduce programmed cell death, attenuate ischemic injuries, and improve neurological outcomes. However, the mechanisms involved have not been completely elucidated. Recent studies indicate that autophagy is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. This study aims to determine the role of autophagy in IPOC-induced neuroprotection against focal cerebral ischemia in rats.

          Methodology/Principal Findings

          A focal cerebral ischemic model with permanent middle cerebral artery (MCA) occlusion plus transient common carotid artery (CCA) occlusion was established. The autophagosomes and the expressions of LC3/Beclin 1/p62 were evaluated for their contribution to the activation of autophagy. We found that autophagy was markedly induced with the upregulation of LC3/Beclin 1 and downregulation of p62 in the penumbra at various time intervals following ischemia. IPOC, performed at the onset of reperfusion, reduced infarct size, mitigated brain edema, inhibited the induction of LC3/Beclin 1 and reversed the reduction of p62 simultaneously. Rapamycin, an inducer of autophagy, partially reversed all the aforementioned effects induced by IPOC. Conversely, autophagy inhibitor 3-methyladenine (3-MA) attenuated the ischemic insults, inhibited the activation of autophagy, and elevated the expression of anti-apoptotic protein Bcl-2, to an extent comparable to IPOC.

          Conclusions/Significance

          The present study suggests that inhibition of the autophagic pathway plays a key role in IPOC-induced neuroprotection against focal cerebral ischemia. Thus, pharmacological inhibition of autophagy may provide a novel therapeutic strategy for the treatment of stroke.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          TOR, a Central Controller of Cell Growth

          Cell, 103(2), 253-262
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells.

            3-Methyladenine which stops macroautophagy at the sequestration step in mammalian cells also inhibits the phosphoinositide 3-kinase (PI3K) activity raising the possibility that PI3K signaling controls the macroautophagic pathway (Blommaart, E. F. C., Krause, U., Schellens, J. P. M., Vreeling-Sindelárová, H., and Meijer, A. J. (1997) Eur. J. Biochem. 243, 240-246). The aim of this study was to identify PI3Ks involved in the control of macroautophagic sequestration in human colon cancer HT-29 cells. An increase of class I PI3K products (phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate) caused by either feeding cells with synthetic lipids (dipalmitoyl phosphatidylinositol 3, 4-bisphosphate and dipalmitoyl phosphatidylinositol 3,4, 5-triphosphate) or by stimulating the enzymatic activity by interleukin-13 reduced macroautophagy. In contrast, an increase in the class III PI3K product (phosphatidylinositol 3-phosphate), either by feeding cells with a synthetic lipid or by overexpressing the p150 adaptor, stimulates macroautophagy. Transfection of a specific class III PI3K antisense oligonucleotide greatly inhibited the rate of macroautophagy. In accordance with a role of class III PI3K, wortmannin (an inhibitor of PI3Ks) inhibits macroautophagic sequestration and protein degradation in the low nanomolar range (IC(50) 5-15 nM). Further in vitro enzymatic assay showed that 3-methyladenine inhibits the class III PI3K activity. Dipalmitoyl phosphatidylinositol 3-phosphate supplementation or p150 overexpression rescued the macroautophagic pathway in HT-29 cells overexpressing a GTPase-deficient mutant of the Galpha(i3) protein suggesting that both class III PI3K and trimeric G(i3) protein signaling are required in the control macroautophagy in HT-29 cells. In conclusion, our results demonstrate that distinct classes of PI3K control the macroautophagic pathway in opposite directions. The roles of PI3Ks in macroautophagy are discussed in the context of membrane recycling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small molecules enhance autophagy and reduce toxicity in Huntington's disease models.

              The target of rapamycin proteins regulate various cellular processes including autophagy, which may play a protective role in certain neurodegenerative and infectious diseases. Here we show that a primary small-molecule screen in yeast yields novel small-molecule modulators of mammalian autophagy. We first identified new small-molecule enhancers (SMER) and inhibitors (SMIR) of the cytostatic effects of rapamycin in Saccharomyces cerevisiae. Three SMERs induced autophagy independently of rapamycin in mammalian cells, enhancing the clearance of autophagy substrates such as mutant huntingtin and A53T alpha-synuclein, which are associated with Huntington's disease and familial Parkinson's disease, respectively. These SMERs, which seem to act either independently or downstream of the target of rapamycin, attenuated mutant huntingtin-fragment toxicity in Huntington's disease cell and Drosophila melanogaster models, which suggests therapeutic potential. We also screened structural analogs of these SMERs and identified additional candidate drugs that enhanced autophagy substrate clearance. Thus, we have demonstrated proof of principle for a new approach for discovery of small-molecule modulators of mammalian autophagy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                28 September 2012
                : 7
                : 9
                : e46092
                Affiliations
                [1 ]Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
                [2 ]Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
                [3 ]Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
                [4 ]Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, P. R. China
                Julius-Maximilians-Universität Würzburg, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YZ L. Gao JG. Performed the experiments: L. Gao TJ L. Gu. Analyzed the data: L. Gao LS YL. Contributed reagents/materials/analysis tools: YL GC. Wrote the paper: L. Gao JG.

                Article
                PONE-D-12-13005
                10.1371/journal.pone.0046092
                3461004
                23029398
                de399d81-2be7-4374-a2ee-e060a9843764
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 May 2012
                : 27 August 2012
                Page count
                Pages: 13
                Funding
                This study was supported by Key Project of Medical Science and Technology Development Foundation, Nanjing Department of Health (NO. ZKX09036, http://www.njh.gov.cn/html/list_83.shtml). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Rat
                Molecular Cell Biology
                Cell Death
                Medicine
                Anatomy and Physiology
                Neurological System
                Central Nervous System
                Nervous System Physiology
                Neural Homeostasis
                Neural Pathways
                Physiological Processes
                Energy Metabolism
                Homeostasis
                Cell Physiology
                Neurology
                Cerebrovascular Diseases
                Ischemic Stroke

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content139

                Cited by58

                Most referenced authors945