6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The expression and clinical significance of TPM4 in hepatocellular carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is known as the fifth most common cancer in the world for its poor prognosis. New diagnostic markers and treatments are urgent to discover. To evaluate the protein expression of Tropomyosin4 (TPM4) and investigate its prognostic value in HCC, we collected 110 patients with different degrees of HCC and 10 patients with normal hepatic tissues and performed immunohistochemistry. Western bot was used to evaluate the expression of TPM4 in three HCC cell lines (HepG2, Huh7, SMMC-7721) and normal liver cell line LO2, as well as 7 HCC tissues and 7 normal hepatic tissues. The results of TPM4 staining revealed that TPM4 expression in HCC was higher than that in normal hepatic tissues, which was positive in 51.8% (n=57) and negative in 48.2% (n=53) while in normal hepatic tissues positive staining was in 10% (n=1) and negative staining was in 90% (n=9) ( P=0.011). And the expression of TPM4 was related to pT status, grade and stage ( P<0.001, P=0.015 and P<0.001, respectively). Western blot results indicated that TPM4 was high expressed in HCC cell line and HCC tissues. In conclusion, we believe that TPM4 can be applied as a diagnostic and prognostic marker to assist the management of HCC.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2020

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway.

            The c-Jun NH2-terminal kinase (JNK) is activated when cells are exposed to ultraviolet (UV) radiation. However, the functional consequence of JNK activation in UV-irradiated cells has not been established. It is shown here that JNK is required for UV-induced apoptosis in primary murine embryonic fibroblasts. Fibroblasts with simultaneous targeted disruptions of all the functional Jnk genes were protected against UV-stimulated apoptosis. The absence of JNK caused a defect in the mitochondrial death signaling pathway, including the failure to release cytochrome c. These data indicate that mitochondria are influenced by proapoptotic signal transduction through the JNK pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification of three m6A‐related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma

              Abstract Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is extremely harmful to human health. In recent years, N6‐methyladenosine (m6A) RNA methylation in eukaryotic mRNA has been increasingly implicated in cancer pathogenesis and prognosis. In this study, we downloaded the expression profile and clinical information of 307 patients from The Cancer Genome Atlas database and 64 patients from the Gene Expression Omnibus (GEO) database, and univariate Cox analysis revealed that METTL14 was a prognostic m6A RNA methylation regulator. For further study on the related genes of METTL14, weighted gene co‐expression network analysis was used to find the relationship between METTL14 and gene expression, and univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) methods were used to identify hub genes that may be associated with HCC prognosis. The results indicated that cysteine sulfinic acid decarboxylase, glutamic‐oxaloacetic transaminase 2, and suppressor of cytokine signaling 2 were key genes affecting the prognosis of HCC patients, and m6A methylation of these mRNAs may be regulated by METTL14. Finally, a nomogram was constructed based on the hub gene expression levels, and its prediction accuracy and discriminative ability were measured by the C‐index and a calibration curve. In conclusion, METTL14, an m6A RNA methylation regulator, may participate in the malignant progression of HCC by adjusting the m6A of cysteine sulfinic acid decarboxylase, glutamic‐oxaloacetic transaminase 2, and suppressor of cytokine signaling 2, and these genes are useful for prognostic stratification and treatment strategy development.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2021
                1 January 2021
                : 18
                : 1
                : 169-175
                Affiliations
                [1 ]Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China.
                [2 ]The First School of Clinical Medicine, Southern Medical University, Guangzhou, China, 510515.
                [3 ]Center of Reproductive Medicine, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 510080.
                Author notes
                ✉ Corresponding author: Linjing Li, Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, 82 Cuiying Gate Road, Lanzhou, Gansu, 730000, P.R. China. E-mail: lilinj@ 123456lzu.edu.cn .

                *These authors contributed equally to this article.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv18p0169
                10.7150/ijms.49906
                7738955
                33390785
                de362d80-33bc-444c-a7f5-755ea5403053
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 24 June 2020
                : 7 October 2020
                Categories
                Research Paper

                Medicine
                hepatocellular carcinoma,tpm4,biological marker,clinicopathological parameters,diagnosis
                Medicine
                hepatocellular carcinoma, tpm4, biological marker, clinicopathological parameters, diagnosis

                Comments

                Comment on this article

                scite_
                18
                0
                16
                0
                Smart Citations
                18
                0
                16
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content526

                Cited by10

                Most referenced authors351