22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rye-Based Evening Meals Favorably Affected Glucose Regulation and Appetite Variables at the Following Breakfast; A Randomized Controlled Study in Healthy Subjects

      research-article
      * , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Whole grain has shown potential to prevent obesity, cardiovascular disease and type 2 diabetes. Possible mechanism could be related to colonic fermentation of specific indigestible carbohydrates, i.e. dietary fiber (DF). The aim of this study was to investigate effects on cardiometabolic risk factors and appetite regulation the next day when ingesting rye kernel bread rich in DF as an evening meal.

          Method

          Whole grain rye kernel test bread (RKB) or a white wheat flour based bread (reference product, WWB) was provided as late evening meals to healthy young adults in a randomized cross-over design. The test products RKB and WWB were provided in two priming settings: as a single evening meal or as three consecutive evening meals prior to the experimental days. Test variables were measured in the morning, 10.5–13.5 hours after ingestion of RKB or WWB. The postprandial phase was analyzed for measures of glucose metabolism, inflammatory markers, appetite regulating hormones and short chain fatty acids (SCFA) in blood, hydrogen excretion in breath and subjective appetite ratings.

          Results

          With the exception of serum CRP, no significant differences in test variables were observed depending on length of priming (P>0.05). The RKB evening meal increased plasma concentrations of PYY (0–120 min, P<0.001), GLP-1 (0–90 min, P<0.05) and fasting SCFA (acetate and butyrate, P<0.05, propionate, P = 0.05), compared to WWB. Moreover, RKB decreased blood glucose (0–120 min, P = 0.001), serum insulin response (0–120 min, P<0.05) and fasting FFA concentrations (P<0.05). Additionally, RKB improved subjective appetite ratings during the whole experimental period (P<0.05), and increased breath hydrogen excretion (P<0.001), indicating increased colonic fermentation activity.

          Conclusion

          The results indicate that RKB evening meal has an anti-diabetic potential and that the increased release of satiety hormones and improvements of appetite sensation could be beneficial in preventing obesity. These effects could possibly be mediated through colonic fermentation.

          Trial Registration

          ClinicalTrials.gov NCT02093481

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

          Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal.

            We have previously shown that gut microbial fermentation of prebiotics promotes satiety and lowers hunger and energy intake in humans. In rodents, these effects are associated with an increase in plasma gut peptide concentrations, which are involved in appetite regulation and glucose homeostasis. Our aim was to examine the effects of prebiotic supplementation on satiety and related hormones during a test meal for human volunteers by using a noninvasive micromethod for blood sampling to measure plasma gut peptide concentrations. This study was a randomized, double-blind, parallel, placebo-controlled trial. A total of 10 healthy adults (5 men and 5 women) were randomly assigned to groups that received either 16 g prebiotics/d or 16 g dextrin maltose/d for 2 wk. Meal tolerance tests were performed in the morning to measure the following: hydrogen breath test, satiety, glucose homeostasis, and related hormone response. We show that the prebiotic treatment increased breath-hydrogen excretion (a marker of gut microbiota fermentation) by approximately 3-fold and lowered hunger rates. Prebiotics increased plasma glucagon-like peptide 1 and peptide YY concentrations, whereas postprandial plasma glucose responses decreased after the standardized meal. The areas under the curve for plasma glucagon-like peptide 1 and breath-hydrogen excretion measured after the meal (0-60 min) were significantly correlated (r = 0.85, P = 0.007). The glucose response was inversely correlated with the breath-hydrogen excretion areas under the curve (0-180 min; r = -0.73, P = 0.02). Prebiotic supplementation was associated with an increase in plasma gut peptide concentrations (glucagon-like peptide 1 and peptide YY), which may contribute in part to changes in appetite sensation and glucose excursion responses after a meal in healthy subjects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study.

              Glucagon-like peptide 1 (GLP-1) has been proposed as a treatment for type 2 diabetes. We have investigated the long-term effects of continuous administration of this peptide hormone in a 6-week pilot study. 20 patients with type 2 diabetes were alternately assigned continuous subcutaneous infusion of GLP-1 (n=10) or saline (n=10) for 6 weeks. Before (week 0) and at weeks 1 and 6, they underwent beta-cell function tests (hyperglycaemic clamps), 8 h profiles of plasma glucose, insulin, C-peptide, glucagon, and free fatty acids, and appetite and side-effect ratings on 100 mm visual analogue scales; at weeks 0 and 6 they also underwent dexascanning, measurement of insulin sensitivity (hyperinsulinaemic euglycaemic clamps), haemoglobin A(1c), and fructosamine. The primary endpoints were haemoglobin A(1c) concentration, 8-h profile of glucose concentration in plasma, and beta-cell function (defined as the first-phase response to glucose and the maximum insulin secretory capacity of the cell). Analyses were per protocol. One patient assigned saline was excluded because no veins were accessible. In the remaining nine patients in that group, no significant changes were observed except an increase in fructosamine concentration (p=0.0004). In the GLP-1 group, fasting and 8 h mean plasma glucose decreased by 4.3 mmol/L and 5.5 mmol/L (p<0.0001). Haemoglobin A(1c) decreased by 1.3% (p=0.003) and fructosamine fell to normal values (p=0.0002). Fasting and 8 h mean concentrations of free fatty acids decreased by 30% and 23% (p=0.0005 and 0.01, respectively). Gastric emptying was inhibited, bodyweight decreased by 1.9 kg, and appetite was reduced. Both insulin sensitivity and beta-cell function improved (p=0.003 and p=0.003, respectively). No important side-effects were seen. GLP-1 could be a new treatment for type 2 diabetes, though further investigation of the long-term effects of GLP-1 is needed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 March 2016
                2016
                : 11
                : 3
                : e0151985
                Affiliations
                [001]Food for Health Science Centre, Lund University, SE-221 00, Lund, Sweden
                National Institute of Agronomic Research, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JCS ACN IMEB. Performed the experiments: JCS. Analyzed the data: JCS. Wrote the paper: JCS ACN IMEB.

                Article
                PONE-D-15-29930
                10.1371/journal.pone.0151985
                4798690
                26990559
                de295aa0-c321-47dd-a44b-07589088bace
                © 2016 Sandberg et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 July 2015
                : 7 March 2016
                Page count
                Figures: 5, Tables: 6, Pages: 22
                Funding
                This study was supported by the Antidiabetic Food Centre, a VINNOVA VINN Excellence Center at Lund University (grant number 2013/46). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Crop Science
                Crops
                Cereal Crops
                Rye
                Biology and Life Sciences
                Organisms
                Plants
                Grasses
                Rye
                Biology and Life Sciences
                Nutrition
                Diet
                Food
                Bread
                Medicine and Health Sciences
                Nutrition
                Diet
                Food
                Bread
                Medicine and Health Sciences
                Endocrinology
                Diabetic Endocrinology
                Insulin
                Biology and Life Sciences
                Biochemistry
                Hormones
                Insulin
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Sugar
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Sugar
                Medicine and Health Sciences
                Hematology
                Blood
                Blood Sugar
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Plasma
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Plasma
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Plasma
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Plasma
                Medicine and Health Sciences
                Hematology
                Blood
                Blood Plasma
                Biology and Life Sciences
                Agriculture
                Crop Science
                Crops
                Cereal Crops
                Wheat
                Biology and Life Sciences
                Organisms
                Plants
                Grasses
                Wheat
                Research and Analysis Methods
                Immunologic Techniques
                Immunoassays
                Enzyme Immunoassay
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolic Processes
                Fermentation
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article