24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long non-coding RNAs (lncRNAs), which are important functional regulators in cancer, have received increased attention in recent years. In this study, next-generation sequencing technology was used to identify aberrantly expressed lncRNAs in follicular thyroid carcinoma (FTC). The long non-coding RNA–HLA complex P5 (HCP5) was found to be overexpressed in FTC. The results of the qPCR analysis were consistent with the sequencing results. In addition, functional experiments showed that overexpression of HCP5 can promote the proliferation, migration, invasiveness and angiogenic ability of FTC cells. Furthermore, according to the sequencing results, HCP5 and alpha-2, 6-sialyltransferase 2 (ST6GAL2) were co-expressed in FTC. We hypothesised that ST6GAL2 may be regulated by HCP5, which would in turn mediate the activity of FTC cells. Through qPCR, immunostaining analyses and functional experiments, we determined that the expression of HCP5 was elevated and was correlated with the levels of ST6GAL2 in FTC tissues and cells. Mechanistic experiments showed that HCP5 functions as a competing endogenous RNA (ceRNA) and acts as a sponge for miR-22-3p, miR-186-5p and miR-216a-5p, which activates ST6GAL2. In summary, our study revealed that HCP5 is a tumour regulator in the development of FTC and that it may contribute to improvement of FTC diagnosis and therapy.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular genetics and diagnosis of thyroid cancer.

          Thyroid cancer is a common type of endocrine malignancy, and its incidence has been steadily increasing in many regions of the world. Initiation and progression of thyroid cancer involves multiple genetic and epigenetic alterations, of which mutations leading to the activation of the MAPK and PI3K-AKT signaling pathways are crucial. Common mutations found in thyroid cancer are point mutation of the BRAF and RAS genes as well as RET/PTC and PAX8/PPARγ chromosomal rearrangements. The mutational mechanisms seem to be linked to specific etiologic factors. Chromosomal rearrangements have a strong association with exposure to ionizing radiation and possibly with DNA fragility, whereas point mutations probably arise as a result of chemical mutagenesis. A potential role of dietary iodine excess in the generation of BRAF point mutations has also been proposed. Somatic mutations and other molecular alterations have been recognized as helpful diagnostic and prognostic markers for thyroid cancer and are beginning to be introduced into clinical practice, to offer a valuable tool for the management of patients with thyroid nodules.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Management of a solitary thyroid nodule.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of cell proliferation pathways by microRNAs.

              MicroRNAs (miRNAs) are small non-coding RNAs that regulate a large variety of cellular processes including differentiation, apoptosis and proliferation. Several miRNAs display defective expression patterns in human tumors with the consequent alteration of target oncogene or tumor suppressor genes. Many of these miRNAs modulate the major proliferation pathways through direct interaction with critical regulators such as RAS, PI3K/PTEN or ABL, as well as members of the retinoblastoma pathway, Cyclin-CDK complexes or cell cycle inhibitors of the INK4 or Cip/Kip families. A complex interplay between miRNAs and MYC or E2F family members also exists to modulate cell cycle-dependent transcription during normal or tumoral proliferation. The ability of miRNAs to modulate these proliferation pathways may have relevant implications not only in physiological or developmental processes but also in tumor progression or cancer therapy.
                Bookmark

                Author and article information

                Contributors
                +84671291-5122 , wangguangzhi1986@hotmail.com
                +84671291-5122 , zyf0386@sina.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                7 March 2018
                7 March 2018
                March 2018
                : 9
                : 3
                : 372
                Affiliations
                GRID grid.452828.1, Department of General Surgery, The Second Hospital of Dalian Medical University, ; Dalian, China
                Article
                382
                10.1038/s41419-018-0382-7
                5841368
                29515098
                de1c6bef-1639-47dd-b738-8bfe04868fa2
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 October 2017
                : 22 January 2018
                : 5 February 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article