6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Embracing mountain microbiome and ecosystem functions under global change

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Biodiversity hotspots for conservation priorities.

          Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            TOWARD A METABOLIC THEORY OF ECOLOGY

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TOWARD AN ECOLOGICAL CLASSIFICATION OF SOIL BACTERIA

              Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic and abiotic characteristics of the soil environment to determine if they can be divided into ecologically meaningful categories. To do this, we collected 71 unique soil samples from a wide range of ecosystems across North America and looked for relationships between soil properties and the relative abundances of six dominant bacterial phyla (Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, alpha-Proteobacteria, and the beta-Proteobacteria). Of the soil properties measured, net carbon (C) mineralization rate (an index of C availability) was the best predictor of phylum-level abundances. There was a negative correlation between Acidobacteria abundance and C mineralization rates (r2 = 0.26, P < 0.001), while the abundances of beta-Proteobacteria and Bacteroidetes were positively correlated with C mineralization rates (r2 = 0.35, P < 0.001 and r2 = 0.34, P < 0.001, respectively). These patterns were explored further using both experimental and meta-analytical approaches. We amended soil cores from a specific site with varying levels of sucrose over a 12-month period to maintain a gradient of elevated C availabilities. This experiment confirmed our survey results: there was a negative relationship between C amendment level and the abundance of Acidobacteria (r2 = 0.42, P < 0.01) and a positive relationship for both Bacteroidetes and beta-Proteobacteria (r2 = 0.38 and 0.70, respectively; P < 0.01 for each). Further support for a relationship between the relative abundances of these bacterial phyla and C availability was garnered from an analysis of published bacterial clone libraries from bulk and rhizosphere soils. Together our survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals. By applying the copiotroph-oligotroph concept to soil microorganisms we can make specific predictions about the ecological attributes of various bacterial taxa and better understand the structure and function of soil bacterial communities.
                Bookmark

                Author and article information

                Contributors
                Journal
                New Phytologist
                New Phytologist
                Wiley
                0028-646X
                1469-8137
                June 2022
                March 23 2022
                June 2022
                : 234
                : 6
                : 1987-2002
                Affiliations
                [1 ]State Key Laboratory of Lake Science and Environment Nanjing Institute of Geography and Limnology Chinese Academic of Sciences Nanjing 210008 China
                [2 ]University of Chinese Academy of Sciences Beijing 100049 China
                [3 ]College of Resources and Environment Hunan Agricultural University Changsha 410128 China
                [4 ]State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
                [5 ]Department of Geosciences and Geography University of Helsinki Helsinki FIN‐00014 Finland
                [6 ]School of Geography and Ocean Science Nanjing University Nanjing 210023 China
                [7 ]Institute for Environmental Genomics and Department of Microbiology and Plant Biology University of Oklahoma Norman OK 73019 USA
                [8 ]Earth and Environmental Sciences Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
                Article
                10.1111/nph.18051
                35211983
                de024cec-1ae1-4775-96c1-ede08973b5ce
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article