23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TAp63 suppresses mammary tumorigenesis through regulation of the Hippo pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanisms regulating the transition of mammary epithelial cells (MECs) to mammary stem cells (MaSCs) and to tumor-initiating cells (TICs) have not been entirely elucidated. The p53 family member, p63, is critical for mammary gland development and contains transactivation domain isoforms, which have tumor-suppressive activities, and the ΔN isoforms, which act as oncogenes. In the clinic, p63 is often used as a diagnostic marker, and further analysis of the function of TAp63 in the mammary gland is critical for improved diagnosis and patient care. Loss of TAp63 in mice leads to the formation of aggressive metastatic mammary adenocarcinoma at 9–16 months of age. Here we show that TAp63 is crucial for the transition of mammary cancer cells to TICs. When TAp63 is lost, MECs express embryonic and MaSC signatures and activate the Hippo pathway. These data indicate a crucial role for TAp63 in mammary TICs and provide a mechanism for its role as a tumor- and metastasis-suppressor in breast cancer.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures.

          The three-dimensional culture of MCF-10A mammary epithelial cells on a reconstituted basement membrane results in formation of polarized, growth-arrested acini-like spheroids that recapitulate several aspects of glandular architecture in vivo. Oncogenes introduced into MCF-10A cells disrupt this morphogenetic process, and elicit distinct morphological phenotypes. Recent studies analyzing the mechanistic basis for phenotypic heterogeneity observed among different oncogenes (e.g., ErbB2, cyclin D1) have illustrated the utility of this three-dimensional culture system in modeling the biological activities of cancer genes, particularly with regard to their ability to disrupt epithelial architecture during the early aspects of carcinoma formation. Here we provide a collection of protocols to culture MCF-10A cells, to establish stable pools expressing a gene of interest via retroviral infection, as well as to grow and analyze MCF-10A cells in three-dimensional basement membrane culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development.

            The p63 gene, a homologue of the tumour-suppressor p53, is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and epidermal appendages, which are all sites of reciprocal signalling that direct morphogenetic patterning of the underlying mesoderm. The limb truncations are due to a failure to maintain the apical ectodermal ridge, a stratified epithelium, essential for limb development. The embryonic epidermis of p63-/- mice undergoes an unusual process of non-regenerative differentiation, culminating in a striking absence of all squamous epithelia and their derivatives, including mammary, lacrymal and salivary glands. Taken together, our results indicate that p63 is critical for maintaining the progenitor-cell populations that are necessary to sustain epithelial development and morphogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p63 is a p53 homologue required for limb and epidermal morphogenesis.

              The p53 tumour suppressor is a transcription factor that regulates the progression of the cell through its cycle and cell death (apoptosis) in response to environmental stimuli such as DNA damage and hypoxia. Even though p53 modulates these critical cellular processes, mice that lack p53 are developmentally normal, suggesting that p53-related proteins might compensate for the functions of p53 during embryogenesis. Two p53 homologues, p63 and p73, are known and here we describe the function of p63 in vivo. Mice lacking p63 are born alive but have striking developmental defects. Their limbs are absent or truncated, defects that are caused by a failure of the apical ectodermal ridge to differentiate. The skin of p63-deficient mice does not progress past an early developmental stage: it lacks stratification and does not express differentiation markers. Structures dependent upon epidermal-mesenchymal interactions during embryonic development, such as hair follicles, teeth and mammary glands, are absent in p63-deficient mice. Thus, in contrast to p53, p63 is essential for several aspects of ectodermal differentiation during embryogenesis.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Oncogene
                Nature Publishing Group
                0950-9232
                1476-5594
                27 April 2017
                21 November 2016
                : 36
                : 17
                : 2377-2393
                Affiliations
                [1 ]Department of Molecular Oncology, H. Lee Moffitt Cancer Center , Tampa, FL, USA
                [2 ]Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center , Houston, Tampa, FL, USA
                [3 ]Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center , Tampa, FL, USA
                [4 ]Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, TX, USA
                [5 ]Department of Biology and Biochemistry, University of Houston , Houston, TX, USA
                [6 ]Department of Pathology and Laboratory Medicine, University of Kansas Medical Center , Kansas City, KS, USA
                Author notes
                [* ]Department of Molecular Oncology, H. Lee Moffitt Cancer Center , 12902 Magnolia Drive, Tampa, FL 33612, USA. E-mail: elsa.flores@ 123456moffitt.org
                [7]

                These authors contributed equally to this work.

                Article
                onc2016388
                10.1038/onc.2016.388
                5415945
                27869165
                dddbfcad-7342-4b3f-872a-fe4b5caeb0d9
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 31 March 2016
                : 03 August 2016
                : 12 September 2016
                Categories
                Original Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content589

                Cited by21

                Most referenced authors901