1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Testosterone synthesis was inhibited in the testis metabolomics of a depression mouse model

      , , , ,
      Journal of Affective Disorders
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Major depressive disorder.

          Major depressive disorder (MDD) is a debilitating disease that is characterized by depressed mood, diminished interests, impaired cognitive function and vegetative symptoms, such as disturbed sleep or appetite. MDD occurs about twice as often in women than it does in men and affects one in six adults in their lifetime. The aetiology of MDD is multifactorial and its heritability is estimated to be approximately 35%. In addition, environmental factors, such as sexual, physical or emotional abuse during childhood, are strongly associated with the risk of developing MDD. No established mechanism can explain all aspects of the disease. However, MDD is associated with alterations in regional brain volumes, particularly the hippocampus, and with functional changes in brain circuits, such as the cognitive control network and the affective-salience network. Furthermore, disturbances in the main neurobiological stress-responsive systems, including the hypothalamic-pituitary-adrenal axis and the immune system, occur in MDD. Management primarily comprises psychotherapy and pharmacological treatment. For treatment-resistant patients who have not responded to several augmentation or combination treatment attempts, electroconvulsive therapy is the treatment with the best empirical evidence. In this Primer, we provide an overview of the current evidence of MDD, including its epidemiology, aetiology, pathophysiology, diagnosis and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.

            Significant advances have taken place in our knowledge of the enzymes involved in steroid hormone biosynthesis since the last comprehensive review in 1988. Major developments include the cloning, identification, and characterization of multiple isoforms of 3beta-hydroxysteroid dehydrogenase, which play a critical role in the biosynthesis of all steroid hormones and 17beta-hydroxysteroid dehydrogenase where specific isoforms are essential for the final step in active steroid hormone biosynthesis. Advances have taken place in our understanding of the unique manner that determines tissue-specific expression of P450aromatase through the utilization of alternative promoters. In recent years, evidence has been obtained for the expression of steroidogenic enzymes in the nervous system and in cardiac tissue, indicating that these tissues may be involved in the biosynthesis of steroid hormones acting in an autocrine or paracrine manner. This review presents a detailed description of the enzymes involved in the biosynthesis of active steroid hormones, with emphasis on the human and mouse enzymes and their expression in gonads, adrenal glands, and placenta.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging applications of metabolomics in drug discovery and precision medicine.

              Metabolomics is an emerging 'omics' science involving the comprehensive characterization of metabolites and metabolism in biological systems. Recent advances in metabolomics technologies are leading to a growing number of mainstream biomedical applications. In particular, metabolomics is increasingly being used to diagnose disease, understand disease mechanisms, identify novel drug targets, customize drug treatments and monitor therapeutic outcomes. This Review discusses some of the latest technological advances in metabolomics, focusing on the application of metabolomics towards uncovering the underlying causes of complex diseases (such as atherosclerosis, cancer and diabetes), the growing role of metabolomics in drug discovery and its potential effect on precision medicine.
                Bookmark

                Author and article information

                Journal
                Journal of Affective Disorders
                Journal of Affective Disorders
                Elsevier BV
                01650327
                April 2024
                April 2024
                : 350
                : 627-635
                Article
                10.1016/j.jad.2024.01.143
                ddb0d44d-9638-4083-99a4-e8404a8be38f
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article