47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Survey of High Throughput RNA-Seq Data Reveals Potential Roles for lncRNAs during Development and Stress Response in Bread Wheat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long non-coding RNAs (lncRNAs) are a family of regulatory RNAs that play essential role in the various developmental processes and stress responses. Recent advances in sequencing technology and computational methods enabled identification and characterization of lncRNAs in certain plant species, but they are less known in Triticum aestivum (bread wheat). Herein, we analyzed 52 RNA seq data (>30 billion reads) and identified 44,698 lncRNAs in T. aestivum genome, which were characterized in comparison to the coding sequences (mRNAs). Similar to the mRNAs, lncRNAs were also derived from each sub-genome and chromosome, and showed tissue developmental stage specific and differential expression, as well. The modulated expression of lncRNAs during abiotic stresses like heat, drought, and salt indicated their putative role in stress response. The co-expression of lncRNAs with vital mRNAs including various transcription factors and enzymes involved in Abscisic acid (ABA) biosynthesis, and gene ontology mapping inferred their regulatory roles in numerous biological processes. A few lncRNAs were predicted as precursor (19 lncRNAs), while some as target mimics (1,047 lncRNAs) of known miRNAs involved in various regulatory functions. The results suggested numerous functions of lncRNAs in T. aestivum, and unfolded the opportunities for functional characterization of individual lncRNA in future studies.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          psRNATarget: a plant small RNA target analysis server

          Plant endogenous non-coding short small RNAs (20–24 nt), including microRNAs (miRNAs) and a subset of small interfering RNAs (ta-siRNAs), play important role in gene expression regulatory networks (GRNs). For example, many transcription factors and development-related genes have been reported as targets of these regulatory small RNAs. Although a number of miRNA target prediction algorithms and programs have been developed, most of them were designed for animal miRNAs which are significantly different from plant miRNAs in the target recognition process. These differences demand the development of separate plant miRNA (and ta-siRNA) target analysis tool(s). We present psRNATarget, a plant small RNA target analysis server, which features two important analysis functions: (i) reverse complementary matching between small RNA and target transcript using a proven scoring schema, and (ii) target-site accessibility evaluation by calculating unpaired energy (UPE) required to ‘open’ secondary structure around small RNA’s target site on mRNA. The psRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of small RNA/target site pairs that may affect small RNA binding activity to target transcript. The psRNATarget server is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded small RNAs and transcript sequences; and outputs a comprehensive list of small RNA/target pairs along with the online tools for batch downloading, key word searching and results sorting. The psRNATarget server is freely available at http://plantgrn.noble.org/psRNATarget/.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rising temperatures reduce global wheat production

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abscisic Acid synthesis and response.

              Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                09 June 2017
                2017
                : 8
                : 1019
                Affiliations
                [1] 1Department of Botany, Panjab University Chandigarh, India
                [2] 2National Agri-Food Biotechnology Institute Mohali, India
                [3] 3Department of Biotechnology, Panjab University Chandigarh, India
                Author notes

                Edited by: Andy Pereira, University of Arkansas, United States

                Reviewed by: Hong Zhang, Northwest A&F University, China; Jose Luis Reyes, National Autonomous University of Mexico, Mexico

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                †Present Address: Shailesh Sharma, National Institute of Animal Biotechnology, Hyderabad, India

                ‡These authors have contributed equally to this work.

                Article
                10.3389/fpls.2017.01019
                5465302
                28649263
                ddac7cac-e83a-4e86-b131-f4de77bc4711
                Copyright © 2017 Shumayla, Sharma, Taneja, Tyagi, Singh and Upadhyay.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 February 2017
                : 29 May 2017
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 99, Pages: 18, Words: 12272
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                bread wheat,co-expression,developmental process,gene ontology,lncrna,stress response,mirna

                Comments

                Comment on this article