52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transcription factor AP4 is a critical regulator of epithelial–mesenchymal transition, migration, invasion, and metastasis in colorectal cancer cells.

          Abstract

          The basic helix-loop-helix transcription factor AP4/TFAP4/AP-4 is encoded by a c-MYC target gene and displays up-regulation concomitantly with c-MYC in colorectal cancer (CRC) and numerous other tumor types. Here a genome-wide characterization of AP4 DNA binding and mRNA expression was performed using a combination of microarray, genome-wide chromatin immunoprecipitation, next-generation sequencing, and bioinformatic analyses. Thereby, hundreds of induced and repressed AP4 target genes were identified. Besides many genes involved in the control of proliferation, the AP4 target genes included markers of stemness ( LGR5 and CD44) and epithelial–mesenchymal transition (EMT) such as SNAIL, E-cadherin/ CDH1, OCLN, VIM, FN1, and the Claudins 1, 4, and 7. Accordingly, activation of AP4 induced EMT and enhanced migration and invasion of CRC cells. Conversely, down-regulation of AP4 resulted in mesenchymal–epithelial transition and inhibited migration and invasion. In addition, AP4 induction was required for EMT, migration, and invasion caused by ectopic expression of c-MYC. Inhibition of AP4 in CRC cells resulted in decreased lung metastasis in mice. Elevated AP4 expression in primary CRC significantly correlated with liver metastasis and poor patient survival. These findings imply AP4 as a new regulator of EMT that contributes to metastatic processes in CRC and presumably other carcinomas.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NCI60 human tumour cell line anticancer drug screen.

            The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue microarrays for high-throughput molecular profiling of tumor specimens.

              Many genes and signalling pathways controlling cell proliferation, death and differentiation, as well as genomic integrity, are involved in cancer development. New techniques, such as serial analysis of gene expression and cDNA microarrays, have enabled measurement of the expression of thousands of genes in a single experiment, revealing many new, potentially important cancer genes. These genome screening tools can comprehensively survey one tumor at a time; however, analysis of hundreds of specimens from patients in different stages of disease is needed to establish the diagnostic, prognostic and therapeutic importance of each of the emerging cancer gene candidates. Here we have developed an array-based high-throughput technique that facilitates gene expression and copy number surveys of very large numbers of tumors. As many as 1000 cylindrical tissue biopsies from individual tumors can be distributed in a single tumor tissue microarray. Sections of the microarray provide targets for parallel in situ detection of DNA, RNA and protein targets in each specimen on the array, and consecutive sections allow the rapid analysis of hundreds of molecular markers in the same set of specimens. Our detection of six gene amplifications as well as p53 and estrogen receptor expression in breast cancer demonstrates the power of this technique for defining new subgroups of tumors.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                1 July 2013
                : 210
                : 7
                : 1331-1350
                Affiliations
                [1 ]Experimental and Molecular Pathology , [2 ]Institute of Pathology, Ludwig-Maximilians University of Munich, D-80337 Munich, Germany
                [3 ]Institute for Research in Biomedicine, Barcelona Science Park, 08028 Barcelona, Spain
                [4 ]Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, D-81675 Munich, Germany
                [5 ]Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
                [6 ]Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, D-81377 Munich, Germany
                [7 ]German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
                [8 ]German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
                Author notes
                CORRESPONDENCE Heiko Hermeking: heiko.hermeking@ 123456med.uni-muenchen.de
                Article
                20120812
                10.1084/jem.20120812
                3698521
                23752226
                dd77c74a-1c8d-4c3c-898c-984785f1e875
                © 2013 Jackstadt et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 16 April 2012
                : 20 May 2013
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article