11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intervalley scattering by acoustic phonons in two-dimensional MoS 2 revealed by double-resonance Raman spectroscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS 2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS 2.

          Abstract

          Double-resonance Raman scattering is a sensitive spectroscopic probe of the interplay between electrons and phonons in a crystal. Here, the authors unveil the signature of double-resonance intervalley scattering by acoustic phonons in two-dimensional MoS 2, underpinning the physics of valley depolarization.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studying disorder in graphite-based systems by Raman spectroscopy.

            Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anomalous lattice vibrations of single- and few-layer MoS2.

              Molybdenum disulfide (MoS(2)) of single- and few-layer thickness was exfoliated on SiO(2)/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic force microscopy. Two Raman modes, E(1)(2g) and A(1g), exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                09 March 2017
                2017
                : 8
                : 14670
                Affiliations
                [1 ]Departamento de Física, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais 30123-970, Brazil
                [2 ]Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University , University Park, State College, Pennsylvania 16802, USA
                [3 ]National Physical Laboratory , Hampton Road, Teddington TW11 0LW, UK
                [4 ]Department of Physics, King's College London, Strand , London WC2R 2LS, UK
                [5 ]Department of Chemistry, The Pennsylvania State University , University Park, State College, Pennsylvania 16802, USA
                [6 ]Department of Materials Science and Engineering, The Pennsylvania State University , University Park, State College, Pennsylvania 16802, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                ncomms14670
                10.1038/ncomms14670
                5347091
                28276472
                dd67f536-17d1-4218-89b3-43ca40f452ef
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 October 2016
                : 23 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article