6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review)

      , , , , , , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the mechanisms and drivers of antimicrobial resistance.

          To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular biology of insect sodium channels and pyrethroid resistance.

            Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequencing-based methods and resources to study antimicrobial resistance

              Antimicrobial resistance extracts high morbidity, mortality and economic costs yearly by rendering bacteria immune to antibiotics. Identifying and understanding antimicrobial resistance are imperative for clinical practice to treat resistant infections and for public health efforts to limit the spread of resistance. Technologies such as next-generation sequencing are expanding our abilities to detect and study antimicrobial resistance. This Review provides a detailed overview of antimicrobial resistance identification and characterization methods, from traditional antimicrobial susceptibility testing to recent deep-learning methods. We focus on sequencing-based resistance discovery and discuss tools and databases used in antimicrobial resistance studies.
                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                September 2020
                September 2020
                : 254
                : 126779
                Article
                10.1016/j.chemosphere.2020.126779
                dd677e9b-451a-4e5e-9b75-187e05287c2e
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article