73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Copy Number Variation in Intron 1 of SOX5 Causes the Pea-comb Phenotype in Chickens

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene.

          Author Summary

          The featherless comb and wattles are defining features of the chicken. Whilst the Pea-comb allele was known to show a dominant inheritance and drastically reduce the size of both comb and wattles, the genetics underlying the mutation remained elusive. Chicken comb is primarily composed of collagen and hyaluronan, which are produced by chondrocytes. These cells are formed through the condensation and differentiation of mesenchyme cells during the chondrogenesis pathway, the early stages of which are regulated by SOX transcription factors. Here we pinpoint a massive amplification of a duplicated sequence in the first intron of SOX5 as causing the Pea-comb phenotype. By studying early embryos, we show that SOX5 is ectopically expressed during a restricted stage of development in the cells which underlie the comb and wattles of Pea-comb animals. We hypothesise that the sequence duplication alters the regulation of SOX5 expression when the differentiation of cells essential for comb and wattle development is taking place. Pea-comb adds to the growing list of phenotypic variation which is explained by regulatory mutations and so demonstrates the evolutionary significance of such events.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

            Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evolution at two levels in humans and chimpanzees.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2009
                June 2009
                12 June 2009
                : 5
                : 6
                : e1000512
                Affiliations
                [1 ]Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
                [2 ]Department of Neuroscience, Uppsala University, Uppsala, Sweden
                [3 ]INRA, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
                [4 ]INRA, UE1295 PEAT, Nouzilly, France
                [5 ]Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
                [6 ]Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
                Princeton University, Howard Hughes Medical Institute, United States of America
                Author notes
                [¤]

                Current address: IFM Biology, Linköping University, Linköping, Sweden

                Conceived and designed the experiments: BB MTB FH LA. Performed the experiments: DW HB JRSM CJR FI. Analyzed the data: DW HB JRSM FH. Contributed reagents/materials/analysis tools: BB DG AV MTB. Wrote the paper: DW JRSM LA.

                Article
                09-PLGE-RA-0198R3
                10.1371/journal.pgen.1000512
                2685452
                19521496
                dd2bf999-2484-4499-b3ea-466f7c6ac0f6
                Wright et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 February 2009
                : 12 May 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Developmental Biology
                Evolutionary Biology/Evolutionary and Comparative Genetics
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Gene Function

                Genetics
                Genetics

                Comments

                Comment on this article