8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STIL balancing primary microcephaly and cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas

          Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future. Electronic supplementary material The online version of this article (doi:10.1007/s00401-012-0958-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural progenitors, neurogenesis and the evolution of the neocortex.

            The neocortex is the seat of higher cognitive functions and, in evolutionary terms, is the youngest part of the mammalian brain. Since its origin, the neocortex has expanded in several mammalian lineages, and this is particularly notable in humans. This expansion reflects an increase in the number of neocortical neurons, which is determined during development and primarily reflects the number of neurogenic divisions of distinct classes of neural progenitor cells. Consequently, the evolutionary expansion of the neocortex and the concomitant increase in the numbers of neurons produced during development entail interspecies differences in neural progenitor biology. Here, we review the diversity of neocortical neural progenitors, their interspecies variations and their roles in determining the evolutionary increase in neuron numbers and neocortex size. © 2014. Published by The Company of Biologists Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Primary Cilia and Mammalian Hedgehog Signaling.

              It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog (Hh) signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hh signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here, we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type-specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands.
                Bookmark

                Author and article information

                Contributors
                +331 40031973 , vincent.elghouzzi@inserm.fr
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                19 January 2018
                19 January 2018
                February 2018
                : 9
                : 2
                : 65
                Affiliations
                [1 ]ISNI 0000 0001 2217 0017, GRID grid.7452.4, PROTECT, INSERM, , Université Paris Diderot, Sorbonne Paris Cité, ; Paris, France
                [2 ]Centre for Neuroscience, IISC Bangalore, India
                [3 ]Curadev Pharma, B 87, Sector 83, Noida, UP 201305, India
                [4 ]AP HP, Hôpital Robert Debré, Service de Génétique Clinique, Paris, France
                [5 ]GRID grid.425213.3, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, , St. Thomas’ Hospital, ; London, UK
                Article
                101
                10.1038/s41419-017-0101-9
                5833631
                29352115
                dd1bb6ed-e827-4c9d-b61c-ee65bd799967
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 August 2017
                : 4 October 2017
                : 23 October 2017
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article