36
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          The detection of monkeypox in humans in the Western Hemisphere.

          During May and June 2003, an outbreak of febrile illness with vesiculopustular eruptions occurred among persons in the midwestern United States who had had contact with ill pet prairie dogs obtained through a common distributor. Zoonotic transmission of a bacterial or viral pathogen was suspected. We reviewed medical records, conducted interviews and examinations, and collected blood and tissue samples for analysis from 11 patients and one prairie dog. Histopathological and electron-microscopical examinations, microbiologic cultures, and molecular assays were performed to identify the etiologic agent. The initial Wisconsin cases evaluated in this outbreak occurred in five males and six females ranging in age from 3 to 43 years. All patients reported having direct contact with ill prairie dogs before experiencing a febrile illness with skin eruptions. We found immunohistochemical or ultrastructural evidence of poxvirus infection in skin-lesion tissue from four patients. Monkeypox virus was recovered in cell cultures of seven samples from patients and from the prairie dog. The virus was identified by detection of monkeypox-specific DNA sequences in tissues or isolates from six patients and the prairie dog. Epidemiologic investigation suggested that the prairie dogs had been exposed to at least one species of rodent recently imported into the United States from West Africa. Our investigation documents the isolation and identification of monkeypox virus from humans in the Western Hemisphere. Infection of humans was associated with direct contact with ill prairie dogs that were being kept or sold as pets. Copyright 2004 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zoonotic poxviruses

            Poxviruses compromise a group of long known important pathogens including some zoonotic members affecting lifestock animals and humans. While whole genome sequence analysis started to shed light into the molecular mechanisms underlying host cell infection, viral replication as well as virulence, our understanding of poxvirus maintenance in nature and their transmission to humans is still poor. During the last two decades, reports on emerging human monkeypox outbreaks in Africa and North America, the increasing number of cowpox virus infections in cats, exotic animals and humans and cases of vaccinia virus infections in humans in South America and India reminded us that – beside the eradicated smallpox virus – there are other poxviruses that can cause harm to men. We start to learn that the host range of some poxviruses is way broader than initially thought and that mainly rodents seem to function as virus reservoir. The following review is aiming to provide an up-to-date overview on the epidemiology of zoonotic poxviruses, emphasizing orthopoxviruses. By outlining the current knowledge of poxvirus transmission, we hope to raise the awareness about modes of acquisition of infections and their proper diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus.

              Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                31 July 2012
                : 7
                : 7
                : e42353
                Affiliations
                [1 ]Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
                [2 ]Department of Viral Therapeutics, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
                [3 ]Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
                [4 ]Pfizer, Sandwich Laboratories, Sandwich, Kent, United Kingdom
                Public Health Agency of Canada, Canada
                Author notes

                Competing Interests: The authors have read the journal's policy and have the following conflicts: JWH has orthopoxvirus DNA vaccine patent (US Patent Number 6,562,376; JWH and JWG have patent application on a orthopoxvirus DNA vaccine component (US Patent Application Number 12/217584). PTL is employed by Pfizer. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

                Conceived and designed the experiments: JWG CFH PTL TCW JWH. Performed the experiments: JWG MJ EMM JWH. Analyzed the data: JWG EMM JWH. Contributed reagents/materials/analysis tools: EMM PTL TCW JWH. Wrote the paper: JWG EMM JWH.

                Article
                PONE-D-12-07523
                10.1371/journal.pone.0042353
                3409187
                22860117
                dd0999eb-4463-4dc6-b013-8288df019eaa
                Copyright @ 2012

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 9 March 2012
                : 4 July 2012
                Page count
                Pages: 13
                Funding
                This project was funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under IAA Y1-AI-9426-02, Appendix A120 B.19 and NIAID UO1 AI070346-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Classification
                DNA viruses
                Pathogenesis
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Clinical Immunology
                Immunity
                Vaccination
                Vaccines
                Vaccine Development
                Infectious Diseases
                Viral Diseases
                Public Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article