1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sustainable 4D printing of magneto-electroactive shape memory polymer composites

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Typical techniques for creating synthetic morphing structures suffer from a compromise between quick shape change and geometric complexity. A novel approach is proposed for encoding numerous shapes and forms by magneto-electroactive shape memory polymer composite (SMPC) structures and integrating sustainability with 4D printing (4DP) technology. Electrically driven, remote controllability, and quick reaction are the features of these sustainable composite structures. Low-cost 4D-printed SMPC structures can be programmed remotely at high temperatures to achieve multi-stable shapes and can snap repeatedly between all programmed temporary and permanent configurations. This allows for multiple designs in a single structure without wasting material. The strategy is based on a knowledge of SMPC mechanics, magnetic response, and the manufacturing idea underlying fused deposition modelling (FDM). Iron-filled magnetic polylactic acid (MPLA) and carbon black-filled conductive PLA (CPLA) composite materials are investigated in terms of microstructure properties, composite interface, and mechanical properties. Characterisation studies are carried out to identify how to control the structure with a low magnetic field. The shape morphing of magneto-electroactive SMPC structures is studied. FDM is used to 4D print MPLA and CPLA adaptive structures with 1D/2D-to-2D/3D shapeshifting by the magnetic field. The benefits of switchable multi-stable structures are reducing material waste and effort/energy and increasing efficiency in sectors such as packaging.

          Graphical Abstract

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Flexible mechanical metamaterials

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A review of stimuli-responsive shape memory polymer composites

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments

              Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to develop treatment methods to overcome these drawbacks has accelerated during the past few years. The main focus of this study is to review the impact of those defects on the mechanical performance of FRC and therefore to discuss the available treatment methods to eliminate or minimize them in order to enhance the functional properties of the printed parts. As FRC is a combination of polymer matrix material and continuous or short reinforcing fibres, this review will thoroughly discuss both thermoplastic polymers and FRCs printed via FDM technology, including the effect of printing parameters such as layer thickness, infill pattern, raster angle and fibre orientation. The most common defects on printed parts, in particular, the void formation, surface roughness and poor bonding between fibre and matrix, are explored. An inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided by this review.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The International Journal of Advanced Manufacturing Technology
                Int J Adv Manuf Technol
                0268-3768
                1433-3015
                May 2023
                February 21 2023
                May 2023
                : 126
                : 1-2
                : 35-48
                Article
                10.1007/s00170-023-11101-0
                dcfe6df0-02f9-4cb7-a823-55c4a23801ad
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article