0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High‐Voltage Electrolyte Chemistry for Lithium Batteries

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Electrical energy storage for the grid: a battery of choices.

          The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.

            The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applications is included. A general conclusion and a perspective on the current limitations and recommended future research directions of lithium metal batteries are presented. The review concludes with an attempt at summarizing the theoretical and experimental achievements in lithium metal anodes and endeavors to realize the practical applications of lithium metal batteries.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reviving the lithium metal anode for high-energy batteries

                Bookmark

                Author and article information

                Contributors
                Journal
                Small Science
                Small Science
                Wiley
                2688-4046
                2688-4046
                May 2022
                February 18 2022
                May 2022
                : 2
                : 5
                : 2100107
                Affiliations
                [1 ]School of Materials and Energy University of Electronic Science and Technology of China Chengdu Sichuan 611731 China
                [2 ]School of Physics and Electronics Hunan University Changsha 410082 Hunan China
                [3 ]School of Materials Science and Engineering Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou 213164 Jiangsu China
                Article
                10.1002/smsc.202100107
                dcf8beb7-d8ef-418a-af5f-f62559c0a7e1
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article