23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          Every step of the way: integrins in cancer progression and metastasis

          Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?

            F Danhier (2016)
            Tumor targeting by nanomedicine-based therapeutics has emerged as a promising approach to overcome the lack of specificity of conventional chemotherapeutic agents and to provide clinicians the ability to overcome shortcomings of current cancer treatment. The major underlying mechanism of the design of nanomedicines was the Enhanced Permeability and Retention (EPR) effect, considered as the "royal gate" in the drug delivery field. However, after the publication of thousands of research papers, the verdict has been handed down: the EPR effect works in rodents but not in humans! Thus the basic rationale of the design and development of nanomedicines in cancer therapy is failing making it necessary to stop claiming efficacy gains via the EPR effect, while tumor targeting cannot be proved in the clinic. It is probably time to dethrone the EPR effect and to ask the question: what is the future of nanomedicines without the EPR effect? The aim of this review is to provide a general overview on (i) the current state of the EPR effect, (ii) the future of nanomedicine and (iii) the strategies of modulation of the tumor microenvironment to improve the delivery of nanomedicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EPR: Evidence and fallacy.

              The enhanced permeability and retention (EPR) of nanoparticles in tumors has long stood as one of the fundamental principles of cancer drug delivery, holding the promise of safe, simple and effective therapy. By allowing particles preferential access to tumors by virtue of size and longevity in circulation, EPR provided a neat rationale for the trend toward nano-sized drug carriers. Following the discovery of the phenomenon by Maeda in the mid-1980s, this rationale appeared to be well justified by the flood of evidence from preclinical studies and by the clinical success of Doxil. Clinical outcomes from nano-sized drug delivery systems, however, have indicated that EPR is not as reliable as previously thought. Drug carriers generally fail to provide superior efficacy to free drug systems when tested in clinical trials. A closer look reveals that EPR-dependent drug delivery is complicated by high tumor interstitial fluid pressure (IFP), irregular vascular distribution, and poor blood flow inside tumors. Furthermore, the animal tumor models used to study EPR differ from clinical tumors in several key aspects that seem to make EPR more pronounced than in human patients. On the basis of this evidence, we believe that EPR should only be invoked on a case-by-case basis, when clinical evidence suggests the tumor type is susceptible. Copyright © 2014 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                14 May 2019
                2019
                : 10
                : 510
                Affiliations
                Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel , Brussels, Belgium
                Author notes

                Edited by: Maria Cristina Bonferoni, University of Pavia, Italy

                Reviewed by: Homan Kang, Harvard Medical School, United States; Mohamed Abdo Rizk, Mansoura University, Egypt

                *Correspondence: Sophie Hernot sophie.hernot@ 123456gmail.com

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2019.00510
                6527780
                31139085
                dcb4a264-74e0-4be0-8f2e-8c3a3eb1f5c4
                Copyright © 2019 Debie and Hernot.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 February 2019
                : 24 April 2019
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 200, Pages: 20, Words: 15776
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                fluorescence-guided surgery,near-infrared fluorescence imaging,molecular imaging,intra-operative imaging,antibody-based fluorescent tracers

                Comments

                Comment on this article