5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Applicability of ChatGPT in Assisting to Solve Higher Order Problems in Pathology

      research-article
      1 , 1 , 1 , 2 ,
      ,
      Cureus
      Cureus
      critical reasoning, intelligence, cognition, decision making, students, microcomputers, problem-solving, artificial intelligence, chatgpt, pathologists

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Artificial intelligence (AI) is evolving for healthcare services. Higher cognitive thinking in AI refers to the ability of the system to perform advanced cognitive processes, such as problem-solving, decision-making, reasoning, and perception. This type of thinking goes beyond simple data processing and involves the ability to understand and manipulate abstract concepts, interpret, and use information in a contextually relevant way, and generate new insights based on past experiences and accumulated knowledge. Natural language processing models like ChatGPT is a conversational program that can interact with humans to provide answers to queries.

          Objective

          We aimed to ascertain the capability of ChatGPT in solving higher-order reasoning in the subject of pathology.

          Methods

          This cross-sectional study was conducted on the internet using an AI-based chat program that provides free service for research purposes. The current version of ChatGPT (January 30 version) was used to converse with a total of 100 higher-order reasoning queries. These questions were randomly selected from the question bank of the institution and categorized according to different systems. The responses to each question were collected and stored for further analysis. The responses were evaluated by three expert pathologists on a zero to five scale and categorized into the structure of the observed learning outcome (SOLO) taxonomy categories. The score was compared by a one-sample median test with hypothetical values to find its accuracy.

          Result

          A total of 100 higher-order reasoning questions were solved by the program in an average of 45.31±7.14 seconds for an answer. The overall median score was 4.08 (Q1-Q3: 4-4.33) which was below the hypothetical maximum value of five (one-test median test p <0.0001) and similar to four (one-test median test p = 0.14). The majority (86%) of the responses were in the “relational” category in the SOLO taxonomy. There was no difference in the scores of the responses for questions asked from various organ systems in the subject of Pathology (Kruskal Wallis p = 0.55). The scores rated by three pathologists had an excellent level of inter-rater reliability (ICC = 0.975 [95% CI: 0.965-0.983]; F = 40.26; p < 0.0001).

          Conclusion

          The capability of ChatGPT to solve higher-order reasoning questions in pathology had a relational level of accuracy. Hence, the text output had connections among its parts to provide a meaningful response. The answers from the program can score approximately 80%. Hence, academicians or students can get help from the program for solving reasoning-type questions also. As the program is evolving, further studies are needed to find its accuracy level in any further versions.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models

          We evaluated the performance of a large language model called ChatGPT on the United States Medical Licensing Exam (USMLE), which consists of three exams: Step 1, Step 2CK, and Step 3. ChatGPT performed at or near the passing threshold for all three exams without any specialized training or reinforcement. Additionally, ChatGPT demonstrated a high level of concordance and insight in its explanations. These results suggest that large language models may have the potential to assist with medical education, and potentially, clinical decision-making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment

            Background Chat Generative Pre-trained Transformer (ChatGPT) is a 175-billion-parameter natural language processing model that can generate conversation-style responses to user input. Objective This study aimed to evaluate the performance of ChatGPT on questions within the scope of the United States Medical Licensing Examination Step 1 and Step 2 exams, as well as to analyze responses for user interpretability. Methods We used 2 sets of multiple-choice questions to evaluate ChatGPT’s performance, each with questions pertaining to Step 1 and Step 2. The first set was derived from AMBOSS, a commonly used question bank for medical students, which also provides statistics on question difficulty and the performance on an exam relative to the user base. The second set was the National Board of Medical Examiners (NBME) free 120 questions. ChatGPT’s performance was compared to 2 other large language models, GPT-3 and InstructGPT. The text output of each ChatGPT response was evaluated across 3 qualitative metrics: logical justification of the answer selected, presence of information internal to the question, and presence of information external to the question. Results Of the 4 data sets, AMBOSS-Step1 , AMBOSS-Step2 , NBME-Free-Step1 , and NBME-Free-Step2 , ChatGPT achieved accuracies of 44% (44/100), 42% (42/100), 64.4% (56/87), and 57.8% (59/102), respectively. ChatGPT outperformed InstructGPT by 8.15% on average across all data sets, and GPT-3 performed similarly to random chance. The model demonstrated a significant decrease in performance as question difficulty increased ( P =.01) within the AMBOSS-Step1 data set. We found that logical justification for ChatGPT’s answer selection was present in 100% of outputs of the NBME data sets. Internal information to the question was present in 96.8% (183/189) of all questions. The presence of information external to the question was 44.5% and 27% lower for incorrect answers relative to correct answers on the NBME-Free-Step1 ( P <.001) and NBME-Free-Step2 ( P =.001) data sets, respectively. Conclusions ChatGPT marks a significant improvement in natural language processing models on the tasks of medical question answering. By performing at a greater than 60% threshold on the NBME-Free-Step-1 data set, we show that the model achieves the equivalent of a passing score for a third-year medical student. Additionally, we highlight ChatGPT’s capacity to provide logic and informational context across the majority of answers. These facts taken together make a compelling case for the potential applications of ChatGPT as an interactive medical education tool to support learning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Digital pathology and artificial intelligence

              In modern clinical practice, digital pathology has a crucial role and is increasingly a technological requirement in the scientific laboratory environment. The advent of whole-slide imaging, availability of faster networks, and cheaper storage solutions has made it easier for pathologists to manage digital slide images and share them for clinical use. In parallel, unprecedented advances in machine learning have enabled the synergy of artificial intelligence and digital pathology, which offers image-based diagnosis possibilities that were once limited only to radiology and cardiology. Integration of digital slides into the pathology workflow, advanced algorithms, and computer-aided diagnostic techniques extend the frontiers of the pathologist's view beyond a microscopic slide and enable true utilisation and integration of knowledge that is beyond human limits and boundaries, and we believe there is clear potential for artificial intelligence breakthroughs in the pathology setting. In this Review, we discuss advancements in digital slide-based image diagnosis for cancer along with some challenges and opportunities for artificial intelligence in digital pathology.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                20 February 2023
                February 2023
                : 15
                : 2
                : e35237
                Affiliations
                [1 ] Pathology, All India Institute of Medical Sciences, Deoghar, Jharkhand, IND
                [2 ] Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, IND
                Author notes
                Article
                10.7759/cureus.35237
                10033699
                36968864
                dcaba79f-6fec-41b9-97ef-f62412abc3ce
                Copyright © 2023, Sinha et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 February 2023
                Categories
                Medical Education
                Pathology
                Healthcare Technology

                critical reasoning,intelligence,cognition,decision making,students,microcomputers,problem-solving,artificial intelligence,chatgpt,pathologists

                Comments

                Comment on this article