0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simultaneous removal of nitrate, lead, and tetracycline by a fixed−biofilm reactor assembled with kapok fiber and sponge iron: Comparative analysis of operating conditions and biotic community

      , , , , , ,
      Environmental Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China.

          Eight antibiotic resistance genes (ARGs), 7 heavy metals, and 6 antibiotics were quantified in manures and soils collected from multiple feedlots in Shanghai. The samples were analyzed to determine if ARG abundances were associated with heavy metal concentration and independent of antibiotics. The results revealed the presence of chloramphenicol, sulfonamides and tetracyclines at concentration ranges of 3.27-17.85, 5.85-33.37 and 4.54-24.66 mg kg(-1), respectively. Typical heavy metals, such as Cu, Zn, and As, were detected at concentration ranges of 32.3-730.1, 75.9-4333.8, and 2.6-617.2 mg kg(-1). All ARGs tested were detected in the collected samples except tetB(P), which was absent in animal manures. Overall, sulfonamide ARGs were more abundant than tetracycline ARGs. Except for sulII, only a weak positive correlation was found between ARGs and their corresponding antibiotics. On the contrary, significant positive correlations (p<0.05) were found between some ARGs and typical heavy metals. For example, sulA and sulIII were strongly correlated with levels of Cu, Zn and Hg. The data demonstrated that the presence of ARGs was relatively independent of their respective antibiotic inducer. In addition to antibiotics, toxic heavy metals, such as Hg, Cu, and Zn, exerted a strong selection pressure and acted as complementary factors for ARG abundance. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters.

            Understanding which/how antibiotic resistance genes (ARGs) contribute to increased acquisition of resistance by pathogens in aquatic environments are challenges of profound significance. We explored the co-occurrence and removal versus enrichment of ARGs and human bacterial pathogens (HBPs) in municipal sewage sludge digesters. We combined metagenomic detection of a wide spectrum of 323 ARGs and 83 HBPs with a correlation-based statistical approach and charted a network of their co-occurrence relationships. The results indicate that most ARGs and a minor proportion of HBPs (mainly Collinsella aerofaciens, Streptococcus salivarius and Gordonia bronchialis) could not be removed by anaerobic digestion, revealing a biological risk of post-digestion sludge in disseminating antibiotic resistance and pathogenicity. Moreover, preferential co-occurrence patterns were evident within one ARG type (e.g., multidrug, beta-lactam, and aminoglycoside) and between two different ARG types (i.e., aminoglycoside and beta-lactam), possibly implicating co-effects of antibiotic selection pressure and co-resistance on shaping antibiotic resistome in sewage sludge. Unlike beta-lactam resistance genes, ARGs of multidrug and macrolide-lincosamide-streptogramin tended to co-occur more with HBPs. Strikingly, we presented evidence that the most straightforward biological origin of an ARG-species co-occurring event is a hosting relationship. Furthermore, a significant and robust HBP-species co-occurrence correlation provides a proper scenario for nominating HBP indicators (e.g., Bifidobacterium spp. are perfect indicators of C. aerofaciens; r = 0.92-0.99 and P-values < 0.01). Combined, this study demonstrates a creative and effective network-based metagenomic approach for exploring ARG hosts and HBP indicators and assessing ARGs acquisition by HBPs in human-impacted environments where ARGs and HBPs may co-thrive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter.

              The Escherichia coli mntH (formerly yfeP) gene encodes a putative membrane protein (MntH) highly similar to members of the eukaryotic Nramp family of divalent metal ion transporters. To determine the function of E. coli MntH, a null mutant was created and MntH was overexpressed both in wild-type E. coli and in the metal-dependent mutant hflB1(Ts). At the restrictive temperature 42 degrees C, the mntH null mutation reduces the suppression of hflB1(Ts) thermosensitivity by exogenous divalent metals. Conversely, overexpression of MntH restores growth at 42 degrees C, increases suppression of the ts phenotype by Fe(II) and Ni(II) and renders hflB1(Ts) cells hypersensitive to Mn(II). Transport studies in intact cells show that MntH selectively facilitates uptake of 54Mn(II) and 55Fe(II) in a temperature-, time- and proton-dependent manner. Competition studies in uptake assays and growth inhibition experiments in hflB1(Ts) mutants together indicate that MntH is a divalent metal cation transporter of broad substrate specificity. The functional characteristics of MntH suggest that it corresponds to the previously described manganese transporter of E. coli. This study indicates that proton-dependent divalent metal ion uptake has been preserved in the Nramp family from bacteria to humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environmental Research
                Environmental Research
                Elsevier BV
                00139351
                February 2023
                February 2023
                : 219
                : 115163
                Article
                10.1016/j.envres.2022.115163
                36580984
                dc5f7e17-9fb9-4af2-9251-5687f99355cb
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article