5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          affy--analysis of Affymetrix GeneChip data at the probe level.

          The processing of the Affymetrix GeneChip data has been a recent focus for data analysts. Alternatives to the original procedure have been proposed and some of these new methods are widely used. The affy package is an R package of functions and classes for the analysis of oligonucleotide arrays manufactured by Affymetrix. The package is currently in its second release, affy provides the user with extreme flexibility when carrying out an analysis and make it possible to access and manipulate probe intensity data. In this paper, we present the main classes and functions in the package and demonstrate how they can be used to process probe-level data. We also demonstrate the importance of probe-level analysis when using the Affymetrix GeneChip platform.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Congenital cataracts and their molecular genetics.

            Cataract can be defined as any opacity of the crystalline lens. Congenital cataract is particularly serious because it has the potential for inhibiting visual development, resulting in permanent blindness. Inherited cataracts represent a major contribution to congenital cataracts, especially in developed countries. While cataract represents a common end stage of mutations in a potentially large number of genes acting through varied mechanisms in practice most inherited cataracts have been associated with a subgroup of genes encoding proteins of particular importance for the maintenance of lens transparency and homeostasis. The increasing availability of more detailed information about these proteins and their functions and is making it possible to understand the pathophysiology of cataracts and the biology of the lens in general.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia.

              Gap junctions are assemblies of intercellular channels that regulate a variety of physiologic and developmental processes through the exchange of small ions and signaling molecules. These channels consist of connexin family proteins that allow for diversity of channel composition and conductance properties. The human connexin 43 gene, or GJA1, is located at human chromosome 6q22-q23 within the candidate region for the oculodentodigital dysplasia locus. This autosomal dominant syndrome presents with craniofacial (ocular, nasal, and dental) and limb dysmorphisms, spastic paraplegia, and neurodegeneration. Syndactyly type III and conductive deafness can occur in some cases, and cardiac abnormalities are observed in rare instances. We found mutations in the GJA1 gene in all 17 families with oculodentodigital dysplasia that we screened. Sixteen different missense mutations and one codon duplication were detected. These mutations may cause misassembly of channels or alter channel conduction properties. Expression patterns and phenotypic features of gja1 animal mutants, reported elsewhere, are compatible with the pleiotropic clinical presentation of oculodentodigital dysplasia.
                Bookmark

                Author and article information

                Journal
                Human Genetics
                Hum Genet
                Springer Science and Business Media LLC
                0340-6717
                1432-1203
                February 2017
                November 22 2016
                February 2017
                : 136
                : 2
                : 205-225
                Article
                10.1007/s00439-016-1747-6
                5783298
                27878435
                dc4ab996-8a70-4092-8364-c42d844211b8
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article