1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Potential Role of Yogurt in Weight Management and Prevention of Type 2 Diabetes

      ,
      Journal of the American College of Nutrition
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Yogurt is a semisolid fermented milk product that originated centuries ago and is viewed as an essential food and important source of nutrients in the diet of humans. Over the last 30 years, overweight and obesity have become characteristic of Western and developing countries, which has led to deleterious health outcomes, including cardiovascular disease, type 2 diabetes, hypertension, and other chronic conditions. Recent epidemiological and clinical evidence suggests that yogurt is involved in the control of body weight and energy homeostasis and may play a role in reducing the risk for type 2 diabetes partly via the replacement of less healthy foods in the diet, its food matrix, the effect of specific nutrients such as calcium and protein on appetite control and glycemia, and alteration in gut microbiota. This review will discuss the specific properties that make yogurt a unique food among the dairy products, epidemiological and clinical evidence supporting yogurt's role in body weight, energy balance, and type 2 diabetes, including its potential mechanisms of action and gaps that need to be explored. Key teaching points • Several epidemiological and clinical studies have suggested a beneficial effect of yogurt consumption in the control of body weight and energy homeostasis, although this remains controversial. • Yogurt possesses unique properties, including its nutritional composition; lactic acid bacteria, which may affect gut microbiota; and food matrix, which may have a potential role in appetite and glycemic control. • Potential mechanisms of action of yogurt include an increase in body fat loss, decrease in food intake and increase in satiety, decrease in glycemic and insulin response, altered gut hormone response, replacement of less healthy foods, and altered gut microbiota. • The relative energy and nutrient content and contribution of a standard portion of yogurt to the overall diet suggest that the percentage daily intake of these nutrients largely contributes to nutrient requirements and provides a strong contribution to the regulation of energy metabolism.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          An obesity-associated gut microbiome with increased capacity for energy harvest.

          The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial ecology: human gut microbes associated with obesity.

            Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in diet and lifestyle and long-term weight gain in women and men.

              Specific dietary and other lifestyle behaviors may affect the success of the straightforward-sounding strategy "eat less and exercise more" for preventing long-term weight gain. We performed prospective investigations involving three separate cohorts that included 120,877 U.S. women and men who were free of chronic diseases and not obese at baseline, with follow-up periods from 1986 to 2006, 1991 to 2003, and 1986 to 2006. The relationships between changes in lifestyle factors and weight change were evaluated at 4-year intervals, with multivariable adjustments made for age, baseline body-mass index for each period, and all lifestyle factors simultaneously. Cohort-specific and sex-specific results were similar and were pooled with the use of an inverse-variance-weighted meta-analysis. Within each 4-year period, participants gained an average of 3.35 lb (5th to 95th percentile, -4.1 to 12.4). On the basis of increased daily servings of individual dietary components, 4-year weight change was most strongly associated with the intake of potato chips (1.69 lb), potatoes (1.28 lb), sugar-sweetened beverages (1.00 lb), unprocessed red meats (0.95 lb), and processed meats (0.93 lb) and was inversely associated with the intake of vegetables (-0.22 lb), whole grains (-0.37 lb), fruits (-0.49 lb), nuts (-0.57 lb), and yogurt (-0.82 lb) (P≤0.005 for each comparison). Aggregate dietary changes were associated with substantial differences in weight change (3.93 lb across quintiles of dietary change). Other lifestyle factors were also independently associated with weight change (P 8 hours of sleep), and television watching (0.31 lb per hour per day). Specific dietary and lifestyle factors are independently associated with long-term weight gain, with a substantial aggregate effect and implications for strategies to prevent obesity. (Funded by the National Institutes of Health and others.).
                Bookmark

                Author and article information

                Journal
                Journal of the American College of Nutrition
                Journal of the American College of Nutrition
                Informa UK Limited
                0731-5724
                1541-1087
                June 22 2016
                November 16 2016
                June 22 2016
                November 16 2016
                : 35
                : 8
                : 717-731
                Article
                10.1080/07315724.2015.1102103
                27332081
                dc306933-7ced-49e7-93e9-58e682c25c11
                © 2016
                History

                Comments

                Comment on this article