13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trichostatin A Affects Developmental Reprogramming of Bread Wheat Microspores towards an Embryogenic Route

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microspores can be developmentally reprogrammed by the application of different stress treatments to initiate an embryogenic pathway leading to the production of doubled haploid (DH) plants. Epigenetic modifications are involved in cell reprogramming and totipotency in response to stress. To increase microspore embryogenesis (ME) efficiency in bread wheat, the effect of the histone deacetylase inhibitor trichostatin A (TSA) has been examined in two cultivars of wheat with different microspore embryogenesis response. Diverse strategies were assayed using 0–0.4 µM TSA as a single induction treatment and after or simultaneously with cold or mannitol stresses. The highest efficiency was achieved when 0.4 µM TSA was applied to anthers for 5 days simultaneously with a 0.7 M mannitol treatment, producing a four times greater number of green DH plants than mannitol. Ultrastructural studies by transmission electron microscopy indicated that mannitol with TSA and mannitol treatments induced similar morphological changes in early stages of microspore reprogramming, although TSA increased the number of microspores with ’star-like’ morphology and symmetric divisions. The effect of TSA on the transcript level of four ME marker genes indicated that the early signaling pathways in ME, involving the TaTDP1 and TAA1b genes, may be mediated by changes in acetylation patterns of histones and/or other proteins.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Yield Trends Are Insufficient to Double Global Crop Production by 2050

            Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops—maize, rice, wheat, and soybean—that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification and validation of reference genes for quantitative RT-PCR normalization in wheat

              Background Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. Results The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and α-tubulin. Conclusion The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability under all the tested conditions. The new reference genes will enable more accurate normalization and quantification of gene expression in wheat and will be helpful for designing primer pairs targeting orthologous genes in other plant species.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                26 October 2020
                November 2020
                : 9
                : 11
                : 1442
                Affiliations
                [1 ]Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; amcast@ 123456eead.csic.es (A.M.C.); ivalero@ 123456eead.csic.es (I.V.-R.); sallue@ 123456eead.csic.es (S.A.); acostar@ 123456eead.csic.es (M.A.C.)
                [2 ]Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, C/Irrunlarrea s/n, 31008 Pamplona, Spain; mburrell@ 123456unav.es
                Author notes
                [* ]Correspondence: valles@ 123456eead.csic.es
                Author information
                https://orcid.org/0000-0002-6143-3227
                https://orcid.org/0000-0003-1585-3690
                https://orcid.org/0000-0002-8018-764X
                https://orcid.org/0000-0002-8649-2362
                Article
                plants-09-01442
                10.3390/plants9111442
                7693754
                33114625
                dc2a50c2-2dc7-4a71-96d3-e1283a629d24
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 September 2020
                : 21 October 2020
                Categories
                Article

                bread wheat,microspore embryogenesis (me),trichostatin a (tsa),doubled haploid (dh),ultrastructural characterization,expression of me marker genes

                Comments

                Comment on this article