26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin in Combination with Aerobic Exercise Improves Follicular Dysfunction via Inhibition of the Hyperandrogen-Induced IRE1 α/XBP1 Endoplasmic Reticulum Stress Pathway in PCOS-Like Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combining diet with exercise can improve health and performance. Exercise can reduce androgen excess and insulin resistance (IR) in polycystic ovary syndrome (PCOS) patients. Curcumin is also presumed to improve the follicle development disorder. Here, we investigated the effects of a combination therapy of oral intake of curcumin and exercise on hyperandrogen-induced endoplasmic reticulum (ER) stress and ovarian granulosa cell (GC) apoptosis in rats with PCOS. We generated a PCOS model via continuous dehydroepiandrosterone subcutaneous injection into the necks of Sprague Dawley rats for 35 days. PCOS-like rats then received curcumin treatment combined with aerobic (treadmill) exercise for 8 weeks. We found that compared to control rats, the ovarian tissue and ovarian GCs of hyperandrogen-induced PCOS rats showed increased levels of ER stress-related genes and proteins. Hyperandrogen-induced ovarian GC apoptosis, which was mediated by excessive ER stress and unfolded protein response (UPR) activation, could cause follicle development disorders. Both curcumin gavage and aerobic exercise improved ovarian function via inhibiting the hyperandrogen-activated ER stress IRE1 α-XBP1 pathway. Dihydrotestosterone- (DHT-) induced ER stress was mitigated by curcumin/irisin or 4 μ8C (an ER stress inhibitor) in primary GC culture. In this in vitro model, the strongly expressed follicular development-related genes Ar, Cyp11α1, and Cyp19α1 were also downregulated.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          A PGC1α-dependent myokine that drives browning of white fat and thermogenesis

          Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional coactivator PGC1α Here we show that PGC1α expression in muscle stimulates an increase in expression of Fndc5, a membrane protein that is cleaved and secreted as a new hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be a protein therapeutic for human metabolic disease and other disorders that are improved with exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease.

            Regular exercise reduces the risk of chronic metabolic and cardiorespiratory diseases, in part because exercise exerts anti-inflammatory effects. However, these effects are also likely to be responsible for the suppressed immunity that makes elite athletes more susceptible to infections. The anti-inflammatory effects of regular exercise may be mediated via both a reduction in visceral fat mass (with a subsequent decreased release of adipokines) and the induction of an anti-inflammatory environment with each bout of exercise. In this Review, we focus on the known mechanisms by which exercise - both acute and chronic - exerts its anti-inflammatory effects, and we discuss the implications of these effects for the prevention and treatment of disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Essential Medicinal Chemistry of Curcumin

              Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2021
                26 December 2021
                : 2021
                : 7382900
                Affiliations
                1State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
                2Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu 212300, China
                3Department of Endocrinology, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
                Author notes

                Academic Editor: Carla Tatone

                Author information
                https://orcid.org/0000-0002-7255-0904
                https://orcid.org/0000-0003-4186-844X
                https://orcid.org/0000-0001-8366-7887
                Article
                10.1155/2021/7382900
                8720591
                34987702
                dc0dc0a3-e366-408f-a111-03e5cef16d66
                Copyright © 2021 Yaling Zhang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 June 2021
                : 22 October 2021
                : 26 November 2021
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81771539
                Award ID: 81971346
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article