3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DyP-Type Peroxidases: Recent Advances and Perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, we chart the major milestones in the research progress on the DyP-type peroxidase family over the past decade. Though mainly distributed among bacteria and fungi, this family actually exhibits more widespread diversity. Advanced tertiary structural analyses have revealed common and different features among members of this family. Notably, the catalytic cycle for the peroxidase activity of DyP-type peroxidases appears to be different from that of other ubiquitous heme peroxidases. DyP-type peroxidases have also been reported to possess activities in addition to peroxidase function, including hydrolase or oxidase activity. They also show various cellular distributions, functioning not only inside cells but also outside of cells. Some are also cargo proteins of encapsulin. Unique, noteworthy functions include a key role in life-cycle switching in Streptomyces and the operation of an iron transport system in Staphylococcus aureus, Bacillus subtilis and Escherichia coli. We also present several probable physiological roles of DyP-type peroxidases that reflect the widespread distribution and function of these enzymes. Lignin degradation is the most common function attributed to DyP-type peroxidases, but their activity is not high compared with that of standard lignin-degrading enzymes. From an environmental standpoint, degradation of natural antifungal anthraquinone compounds is a specific focus of DyP-type peroxidase research. Considered in its totality, the DyP-type peroxidase family offers a rich source of diverse and attractive materials for research scientists.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference

            Abstract Motivation Phylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture and medicine. Finding the optimal tree under the popular maximum likelihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical datasets. Results We present RAxML-NG, a from-scratch re-implementation of the established greedy tree search algorithm of RAxML/ExaML. RAxML-NG offers improved accuracy, flexibility, speed, scalability, and usability compared with RAxML/ExaML. On taxon-rich datasets, RAxML-NG typically finds higher-scoring trees than IQTree, an increasingly popular recent tool for ML-based phylogenetic inference (although IQ-Tree shows better stability). Finally, RAxML-NG introduces several new features, such as the detection of terraces in tree space and the recently introduced transfer bootstrap support metric. Availability and implementation The code is available under GNU GPL at https://github.com/amkozlov/raxml-ng . RAxML-NG web service (maintained by Vital-IT) is available at https://raxml-ng.vital-it.ch/ . Supplementary information Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models

              Abstract ModelTest-NG is a reimplementation from scratch of jModelTest and ProtTest, two popular tools for selecting the best-fit nucleotide and amino acid substitution models, respectively. ModelTest-NG is one to two orders of magnitude faster than jModelTest and ProtTest but equally accurate and introduces several new features, such as ascertainment bias correction, mixture, and free-rate models, or the automatic processing of single partitions. ModelTest-NG is available under a GNU GPL3 license at https://github.com/ddarriba/modeltest , last accessed September 2, 2019.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                24 May 2021
                June 2021
                : 22
                : 11
                : 5556
                Affiliations
                Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan; yoshidat@ 123456fc.jwu.ac.jp
                Author notes
                [* ]Correspondence: suganoy@ 123456fc.jwu.ac.jp ; Tel.: +81-3-5981-3667
                Author information
                https://orcid.org/0000-0002-1384-2210
                Article
                ijms-22-05556
                10.3390/ijms22115556
                8197335
                34074047
                dc05abb8-9f0c-4f1a-bf16-f2664e7695a5
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 05 May 2021
                : 18 May 2021
                Categories
                Review

                Molecular biology
                dyp,dyp-type peroxidase,structure-based sequence alignments,antifungal anthraquinone compounds,lignin degradation,iron uptake,life cycle,hydrolase,oxidase,encapsulin,nano compartment,cargo protein

                Comments

                Comment on this article