17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators

      , ,
      Nature Reviews Gastroenterology & Hepatology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alterations of hepatic metabolism are critical to the development of liver disease. The peroxisome proliferator-activated receptor-γ coactivators (PGC1s) are able to orchestrate, on a transcriptional level, different aspects of liver metabolism, such as mitochondrial oxidative phosphorylation, gluconeogenesis and fatty acid synthesis. As modifications affecting both mitochondrial and lipid metabolism contribute to the initiation and/or progression of liver steatosis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), a link between disrupted PGC1 pathways and onset of these pathological conditions has been postulated. However, despite the large quantity of studies, the scenario is still not completely understood, and some issues remain controversial. Here, we discuss the roles of PGC1s in healthy liver and explore their contribution to the pathogenesis and future therapy of NASH and HCC.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.

          Activation of AMP-activated kinase (AMPK) in skeletal muscle increases glucose uptake, fatty acid oxidation, and mitochondrial biogenesis by increasing gene expression in these pathways. However, the transcriptional components that are directly targeted by AMPK are still elusive. The peroxisome-proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) has emerged as a master regulator of mitochondrial biogenesis; furthermore, it has been shown that PGC-1alpha gene expression is induced by exercise and by chemical activation of AMPK in skeletal muscle. Using primary muscle cells and mice deficient in PGC-1alpha, we found that the effects of AMPK on gene expression of glucose transporter 4, mitochondrial genes, and PGC-1alpha itself are almost entirely dependent on the function of PGC-1alpha protein. Furthermore, AMPK phosphorylates PGC-1alpha directly both in vitro and in cells. These direct phosphorylations of the PGC-1alpha protein at threonine-177 and serine-538 are required for the PGC-1alpha-dependent induction of the PGC-1alpha promoter. These data indicate that AMPK phosphorylation of PGC-1alpha initiates many of the important gene regulatory functions of AMPK in skeletal muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.

            Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.

              Complex interplay between T helper (Th) cells and macrophages contributes to the formation and progression of atherosclerotic plaques. While Th1 cytokines promote inflammatory activation of lesion macrophages, Th2 cytokines attenuate macrophage-mediated inflammation and enhance their repair functions. In spite of its biologic importance, the biochemical and molecular basis of how Th2 cytokines promote maturation of anti-inflammatory macrophages is not understood. We show here that in response to interleukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT6) and PPARgamma-coactivator-1beta (PGC-1beta) induce macrophage programs for fatty acid oxidation and mitochondrial biogenesis. Transgenic expression of PGC-1beta primes macrophages for alternative activation and strongly inhibits proinflammatory cytokine production, whereas inhibition of oxidative metabolism or RNAi-mediated knockdown of PGC-1beta attenuates this immune response. These data elucidate a molecular pathway that directly links mitochondrial oxidative metabolism to the anti-inflammatory program of macrophage activation, suggesting a potential role for metabolic therapies in treating atherogenic inflammation.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Gastroenterology & Hepatology
                Nat Rev Gastroenterol Hepatol
                Springer Nature
                1759-5045
                1759-5053
                December 5 2018
                Article
                10.1038/s41575-018-0089-3
                30518830
                dbdd2997-8f00-4d67-a573-fb6bbcfd8537
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article