136
views
0
recommends
+1 Recommend
0 collections
    9
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells.

          Methods

          To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model.

          Results

          The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival.

          Conclusion

          In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

            We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.

              Cells from some tumors use an altered metabolic pattern compared with that of normal differentiated adult cells in the body. Tumor cells take up much more glucose and mainly process it through aerobic glycolysis, producing large quantities of secreted lactate with a lower use of oxidative phosphorylation that would generate more adenosine triphosphate (ATP), water, and carbon dioxide. This is the Warburg effect, which provides substrates for cell growth and division and free energy (ATP) from enhanced glucose use. This metabolic switch places the emphasis on producing intermediates for cell growth and division, and it is regulated by both oncogenes and tumor suppressor genes in a number of key cancer-producing pathways. Blocking these metabolic pathways or restoring these altered pathways could lead to a new approach in cancer treatments.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2011
                26 July 2011
                : 11
                : 315
                Affiliations
                [1 ]Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Schleusenweg 2-16, 60528 Frankfurt, Germany
                [2 ]Institute of Neurology (Edinger Institute), Goethe University Hospital, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt, Germany
                [3 ]Institute of Neuroradiology, Goethe University Hospital, Schleusenweg 2-16, 60528 Frankfurt, Germany
                [4 ]Institute of Physiology and Pathophysiology, Gutenberg University Medical Center, Duesbergweg 6, 55099 Mainz, Germany
                Article
                1471-2407-11-315
                10.1186/1471-2407-11-315
                3199865
                21791085
                dbd3816d-4a7b-4f22-9adc-ea2f8a32359d
                Copyright ©2011 Maurer et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 April 2011
                : 26 July 2011
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article