10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glucocorticoids and Hippocampal Structure and Function in PTSD :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria.

          Prevalence of posttraumatic stress disorder (PTSD) defined according to the American Psychiatric Association's Diagnostic and Statistical Manual fifth edition (DSM-5; 2013) and fourth edition (DSM-IV; 1994) was compared in a national sample of U.S. adults (N = 2,953) recruited from an online panel. Exposure to traumatic events, PTSD symptoms, and functional impairment were assessed online using a highly structured, self-administered survey. Traumatic event exposure using DSM-5 criteria was high (89.7%), and exposure to multiple traumatic event types was the norm. PTSD caseness was determined using Same Event (i.e., all symptom criteria met to the same event type) and Composite Event (i.e., symptom criteria met to a combination of event types) definitions. Lifetime, past-12-month, and past 6-month PTSD prevalence using the Same Event definition for DSM-5 was 8.3%, 4.7%, and 3.8% respectively. All 6 DSM-5 prevalence estimates were slightly lower than their DSM-IV counterparts, although only 2 of these differences were statistically significant. DSM-5 PTSD prevalence was higher among women than among men, and prevalence increased with greater traumatic event exposure. Major reasons individuals met DSM-IV criteria, but not DSM-5 criteria were the exclusion of nonaccidental, nonviolent deaths from Criterion A, and the new requirement of at least 1 active avoidance symptom.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder.

            A clinical characteristic of posttraumatic stress disorder (PTSD) is persistently elevated fear responses to stimuli associated with the traumatic event. The objective herein is to determine whether extinction of fear responses is impaired in PTSD and whether such impairment is related to dysfunctional activation of brain regions known to be involved in fear extinction, viz., amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC), and dorsal anterior cingulate cortex (dACC). Sixteen individuals diagnosed with PTSD and 15 trauma-exposed non-PTSD control subjects underwent a 2-day fear conditioning and extinction protocol in a 3-T functional magnetic resonance imaging scanner. Conditioning and extinction training were conducted on day 1. Extinction recall (or extinction memory) test was conducted on day 2 (extinguished conditioned stimuli presented in the absence of shock). Skin conductance response (SCR) was scored throughout the experiment as an index of the conditioned response. The SCR data revealed no significant differences between groups during acquisition and extinction of conditioned fear on day 1. On day 2, however, PTSD subjects showed impaired recall of extinction memory. Analysis of functional magnetic resonance imaging data showed greater amygdala activation in the PTSD group during day 1 extinction learning. During extinction recall, lesser activation in hippocampus and vmPFC and greater activation in dACC were observed in the PTSD group. The magnitude of extinction memory across all subjects was correlated with activation of hippocampus and vmPFC during extinction recall testing. These findings support the hypothesis that fear extinction is impaired in PTSD. They further suggest that dysfunctional activation in brain structures that mediate fear extinction learning, and especially its recall, underlie this impairment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurogenesis in the Adult Hippocampus.

              Of the neurogenic zones in the adult brain, adult hippocampal neurogenesis attracts the most attention, because it is involved in higher cognitive function, most notably memory processes, and certain affective behaviors. Adult hippocampal neurogenesis is also found in humans at a considerable level and appears to contribute significantly to hippocampal plasticity across the life span, because it is regulated by activity. Adult hippocampal neurogenesis generates new excitatory granule cells in the dentate gyrus, whose axons form the mossy fiber tract that links the dentate gyrus to CA3. It originates from a population of radial glia-like precursor cells (type 1 cells) that have astrocytic properties, express markers of neural stem cells and divide rarely. They give rise to intermediate progenitor cells with first glial (type 2a) and then neuronal (type 2b) phenotype. Through a migratory neuroblast-like stage (type 3), the newborn, lineage-committed cells exit the cell cycle and enter a maturation stage, during which they extend their dendrites into a the molecular layer and their axon to CA3. They go through a period of several weeks, during which they show increased synaptic plasticity, before finally becoming indistinguishable from the older granule cells.
                Bookmark

                Author and article information

                Journal
                Harvard Review of Psychiatry
                Harvard Review of Psychiatry
                Ovid Technologies (Wolters Kluwer Health)
                1067-3229
                2018
                2018
                : 26
                : 3
                : 142-157
                Article
                10.1097/HRP.0000000000000188
                29734228
                dbc35cd5-6749-4ef7-b451-53f8887d070d
                © 2018
                History

                Comments

                Comment on this article