32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana.

      1 , ,
      Molecular ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Association studies utilize the action of recombination over numerous generations to identify loci that underlie quantitative traits. We use a candidate-gene association approach, segregation analyses and analyses of local linkage disequilibrium (LD) to evaluate the potentially causal effects of molecular variation at PIF4 (PHYTOCROME INTERACTING FACTOR 4) on ecologically important traits in Arabidopsis thaliana. A preliminary analysis of sequence diversity in 14 natural genotypes revealed one intermediate-frequency replacement polymorphism at PIF4. A sample of 161 natural accessions was genotyped at PIF4 and screened for average length of early internodes, inflorescence length, days to flowering and flowering interval (days between bolting and flowering) under high- and low-density environments to test for genotype-phenotype associations. PIF4 was associated with early internode lengths, while the PIF4x treatment interaction was associated with flowering interval in the panel of 161 accessions. Further, in a set of recombinant inbred lines that segregate for the PIF4 polymorphism, nucleotide substitutions at PIF4 co-segregated with early internode lengths, days to flowering and fruit set, suggesting that cryptic population structure in the association-mapping panel and attendant LD with a physically distant locus do not account for the observed association. Finally, in a panel of pseudochromosomes from 20 re-sequenced genotypes, LD appeared to decay rapidly in the immediate vicinity of PIF4, suggesting that flanking loci contribute little to the observed association. In sum, the results suggest that PIF4 causally affects early internode lengths on the primary inflorescence, potentially via effects on reproductive timing and that these traits in turn affect fitness.

          Related collections

          Author and article information

          Journal
          Mol. Ecol.
          Molecular ecology
          Wiley-Blackwell
          1365-294X
          0962-1083
          Mar 2010
          : 19
          : 6
          Affiliations
          [1 ] Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA. mbrock2@uwyo.edu
          Article
          MEC4538
          10.1111/j.1365-294X.2010.04538.x
          20456226
          db9e06ae-9a57-40a0-8833-e8366af4fc98
          History

          Comments

          Comment on this article