3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The industrialization of quantum dot light-emitting diodes (QLEDs) requires the use of less hazardous cadmium-free quantum dots, among which ZnSe-based blue and InP-based green and red quantum dots have received considerable attention. In comparison, the development of InP-based green QLEDs is lagging behind. Here, we prepare green InP/ZnSe/ZnS quantum dots with a diameter of 8.6 nm. We then modify the InP quantum dot emitting layer by passivation with various alkyl diamines and zinc halides, which decreases electron mobility and enhances hole transport. This, together with optimizing the electron transport layer, leads to green 545 nm InP QLEDs with a maximum quantum efficiency (EQE) of 16.3% and a current efficiency 57.5 cd/A. EQE approaches the theoretical limit of InP quantum dots, with an emission quantum yield of 86%.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent

          Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1-3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4-8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively-still well behind the performance of organic LEDs10-12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device-an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solution-processed, high-performance light-emitting diodes based on quantum dots.

            Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High-efficiency quantum-dot light-emitting devices with enhanced charge injection

                Bookmark

                Author and article information

                Contributors
                Journal
                Communications Materials
                Commun Mater
                Springer Science and Business Media LLC
                2662-4443
                December 2021
                September 17 2021
                : 2
                : 1
                Article
                10.1038/s43246-021-00203-5
                db8fdf45-e811-40dd-86b2-1e07fb08f7a7
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article