1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

              Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                September 2022
                July 13 2022
                September 2022
                : 32
                : 38
                : 2204772
                Affiliations
                [1 ]Henry Royce Institute National Graphene Institute Department of Materials The University of Manchester Oxford Road Manchester M13 9PL UK
                [2 ]Center for Nano Science and Technology @PoliMi Istituto Italiano di Tecnologia Via Pascoli 70/3 Milan 20133 Italy
                [3 ]Smart Materials Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
                Article
                10.1002/adfm.202204772
                db76b829-d89f-486f-8813-a5566ce14c91
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article