4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comprehensive review highlights the photocatalytic heterojunctions and their superiority in the photo-destruction of organic pollutants in industrial wastewater

      , , , , ,
      Inorganic Chemistry Communications
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?

          As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphitic carbon nitride based nanocomposites: a review.

              Graphitic carbon nitride (g-C(3)N(4)), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C(3)N(4) suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C(3)N(4) could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C(3)N(4)-based nanocomposites can be classified and summarized: namely, the g-C(3)N(4) based metal-free heterojunction, the g-C(3)N(4)/single metal oxide (metal sulfide) heterojunction, g-C(3)N(4)/composite oxide, the g-C(3)N(4)/halide heterojunction, g-C(3)N(4)/noble metal heterostructures, and the g-C(3)N(4) based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C(3)N(4)-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C(3)N(4)-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C(3)N(4)-based advanced nanomaterials.
                Bookmark

                Author and article information

                Journal
                Inorganic Chemistry Communications
                Inorganic Chemistry Communications
                Elsevier BV
                13877003
                December 2023
                December 2023
                : 158
                : 111503
                Article
                10.1016/j.inoche.2023.111503
                db530e07-4643-4178-9527-03282f8cce41
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article