10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies.

      Analytical Chemistry
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Statistical heterospectroscopy (SHY) is a new statistical paradigm for the coanalysis of multispectroscopic data sets acquired on multiple samples. This method operates through the analysis of the intrinsic covariance between signal intensities in the same and related molecules measured by different techniques across cohorts of samples. The potential of SHY is illustrated using both 600-MHz 1H NMR and UPLC-TOFMS data obtained from control rat urine samples (n = 54) and from a corresponding hydrazine-treated group (n = 58). We show that direct cross-correlation of spectral parameters, viz. chemical shifts from NMR and m/z data from MS, is readily achievable for a variety of metabolites, which leads to improved efficiency of molecular biomarker identification. In addition to structure, higher level biological information can be obtained on metabolic pathway activity and connectivities by examination of different levels of the NMR to MS correlation and anticorrelation matrixes. The SHY approach is of general applicability to complex mixture analysis, if two or more independent spectroscopic data sets are available for any sample cohort. Biological applications of SHY as demonstrated here show promise as a new systems biology tool for biomarker recovery.

          Related collections

          Author and article information

          Journal
          16408915
          10.1021/ac051444m

          Comments

          Comment on this article

          scite_
          332
          0
          251
          0
          Smart Citations
          332
          0
          251
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.