68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PITX3 promoter methylation is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients after radical prostatectomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Molecular biomarkers that might help to distinguish between more aggressive and clinically insignificant prostate cancers (PCa) are still urgently needed. Aberrant DNA methylation as a common molecular alteration in PCa seems to be a promising source for such biomarkers. In this study, PITX3 DNA methylation ( mPITX3) and its potential role as a prognostic biomarker were investigated. Furthermore, m PITX3 was analyzed in combination with the established PCa methylation biomarker PITX2 ( mPITX2).

          Methods

          mPITX3 and mPITX2 were assessed by a quantitative real-time PCR and by means of the Infinium HumanMethylation450 BeadChip. BeadChip data were obtained from The Cancer Genome Atlas (TCGA) Research Network. DNA methylation differences between normal adjacent, benign hyperplastic, and carcinomatous prostate tissues were examined in the TCGA dataset as well as in prostatectomy specimens from the University Hospital Bonn. Retrospective analyses of biochemical recurrence (BCR) were conducted in a training cohort ( n = 498) from the TCGA and an independent validation cohort ( n = 300) from the University Hospital Bonn. All patients received radical prostatectomy.

          Results

          In PCa tissue, mPITX3 was increased significantly compared to normal and benign hyperplastic tissue. In univariate Cox proportional hazards analyses, mPITX3 showed a significant prognostic value for BCR (training cohort: hazard ratio (HR) = 1.83 (95 % CI 1.07–3.11), p = 0.027; validation cohort: HR = 2.56 (95 % CI 1.44–4.54), p = 0.001). A combined evaluation with PITX2 methylation further revealed that hypermethylation of a single PITX gene member (either PITX2 or PITX3) identifies an intermediate risk group.

          Conclusions

          PITX3 DNA methylation alone and in combination with PITX2 is a promising biomarker for the risk stratification of PCa patients and adds relevant prognostic information to common clinically implemented parameters. Further studies are required to determine whether the results are transferable to a biopsy-based patient cohort. Trial registration: Patients for this unregistered study were enrolled retrospectively.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Performance Evaluation of Kits for Bisulfite-Conversion of DNA from Tissues, Cell Lines, FFPE Tissues, Aspirates, Lavages, Effusions, Plasma, Serum, and Urine

          DNA methylation analyses usually require a preceding bisulfite conversion of the DNA. The choice of an appropriate kit for a specific application should be based on the specific performance requirements with regard to the respective sample material. In this study, the performance of nine kits was evaluated: EpiTect Fast FFPE Bisulfite Kit, EpiTect Bisulfite Kit, EpiTect Fast DNA Bisulfite Kit (Qiagen), EZ DNA Methylation-Gold Kit, EZ DNA Methylation-Direct Kit, EZ DNA Methylation-Lightning Kit (Zymo Research), innuCONVERT Bisulfite All-In-One Kit, innuCONVERT Bisulfite Basic Kit, innuCONVERT Bisulfite Body Fluids Kit (Analytik Jena). The kit performance was compared with regard to DNA yield, DNA degradation, DNA purity, conversion efficiency, stability and handling using qPCR, UV, clone sequencing, HPLC, and agarose gel electrophoresis. All kits yielded highly pure DNA suitable for PCR analyses without PCR inhibition. Significantly higher yields were obtained when using the EZ DNA Methylation-Gold Kit and the innuCONVERT Bisulfite kits. Conversion efficiency ranged from 98.7% (EpiTect Bisulfite Kit) to 99.9% (EZ DNA Methylation-Direct Kit). The inappropriate conversion of methylated cytosines to thymines varied between 0.9% (innuCONVERT Bisulfite kits) and 2.7% (EZ DNA Methylation-Direct Kit). Time-to-result ranged from 131 min (innuCONVERT kits) to 402 min (EpiTect Bisulfite Kit). Hands-on-time was between 66 min (EZ DNA Methylation-Lightning Kit) and 104 min (EpiTect Fast FFPE and Fast DNA Bisulfite kits). Highest yields from formalin-fixed and paraffin-embedded (FFPE) tissue sections without prior extraction were obtained using the innuCONVERT Bisulfite All-In-One Kit while the EZ DNA Methylation-Direct Kit yielded DNA with only low PCR-amplifiability. The innuCONVERT Bisulfite All-In-One Kit exhibited the highest versatility regarding different input sample materials (extracted DNA, tissue, FFPE tissue, cell lines, urine sediment, and cellular fractions of bronchial aspirates, pleural effusions, ascites). The innuCONVERT Bisulfite Body Fluids Kit allowed for the analysis of 3 ml plasma, serum, ascites, pleural effusions and urine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prognostic DNA Methylation Markers for Prostate Cancer

            Prostate cancer (PC) is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181) and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients.

              Biomarkers that facilitate prediction of disease progression in lung cancer patients might be clinically valuable in optimizing individualized therapy. In this study, the ability of the DNA methylation biomarkers PITX2 and SHOX2 to predict disease outcome in lung cancer patients has been evaluated. Quantitative, methylation-specific (HeavyMethyl), real-time polymerase chain reaction assays were used to measure DNA methylation of PITX2 and SHOX2 in bisulfite-converted DNA from formalin-fixed, paraffin-embedded tissues from 474 non-small-cell lung cancer patients. In univariate Cox Proportional Hazard analysis, high methylation of SHOX2 and PITX2 was a significant predictor of progression-free survival [SHOX2: n=465, hazard ratio (HR)=1.395 (1.130 to 1.721), P=0.002; PITX2: n=445, HR=1.312 (1.059 to 1.625), P=0.013]. Patients with low methylation of either PITX2 and/or SHOX2 (n=319) showed a significantly higher risk of disease progression as compared with patients with higher methylation of both genes [n=126; HR=1.555 (1.210 to 1.999), P=0.001]. This was particularly true for the subgroup of patients receiving no adjuvant radiotherapy or chemotherapy [n=258, HR=1.838 (1.252 to 2.698), P=0.002]. In multivariate analysis, both biomarkers added significant independent prognostic information to pT, pN, pM, and grade. Another interesting finding of this study was that SHOX2 and PITX2 DNA methylation was shown to be inversely correlated with TTF1 (also known as NKX2-1) expression (PITX2: P=0.018, SHOX2: P<0.001). TFF1 expression was previously found to be associated with improved survival in the same patient cohort. DNA methylation of PITX2 and SHOX2 is an independent prognostic biomarker for disease progression in non-small-cell lung cancer patients.
                Bookmark

                Author and article information

                Contributors
                Holmesa.ee@gmail.com
                Diane.Goltz@ukb.uni-bonn.de
                vws2001@med.cornell.edu
                maria.jung.7@googlemail.com
                sebastianmeller24@gmail.com
                uhl.barbara@googlemail.com
                dietrich.joern@gmail.com
                Magda.Roehler@ukb.uni-bonn.de
                Joerg.Ellinger@ukb.uni-bonn.de
                Glen.Kristiansen@ukb.uni-bonn.de
                +49-228-287-15173 , dimo.dietrich@gmail.com
                Journal
                Clin Epigenetics
                Clin Epigenetics
                Clinical Epigenetics
                BioMed Central (London )
                1868-7075
                1868-7083
                26 September 2016
                26 September 2016
                2016
                : 8
                : 104
                Affiliations
                [1 ]Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
                [2 ]Department of Pathology and Laboratory Medicine, Weill Cornell Medicine of Cornell University, New York, NY USA
                [3 ]Englander Institute for Precision Medicine, Weill Cornell Medicine of Cornell University, New York, NY USA
                [4 ]Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
                [5 ]Department of Urology, University Hospital Bonn, Bonn, Germany
                Article
                270
                10.1186/s13148-016-0270-x
                5037587
                27708722
                db47828a-308f-42bf-ad08-dfc6a07a5dd3
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 May 2016
                : 16 September 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Genetics
                pitx3,pitx2,prostate cancer,dna methylation,prognostic biomarker
                Genetics
                pitx3, pitx2, prostate cancer, dna methylation, prognostic biomarker

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content423

                Cited by13

                Most referenced authors747