5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cross‐sectional study on the in‐herd prevalence of Mycoplasma hyopneumoniae at different stages of pig production

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Polymicrobial respiratory disease in pigs.

          Respiratory disease in pigs is common in modern pork production worldwide and is often referred to as porcine respiratory disease complex (PRDC). PRDC is polymicrobial in nature, and results from infection with various combinations of primary and secondary respiratory pathogens. As a true multifactorial disease, environmental conditions, population size, management strategies and pig-specific factors such as age and genetics also play critical roles in the outcome of PRDC. While non-infectious factors are important in the initiation and outcome of cases of PRDC, the focus of this review is on infectious factors only. There are a variety of viral and bacterial pathogens commonly associated with PRDC including porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO) and Pasteurella multocida (PMULT). The pathogenesis of viral respiratory disease is typically associated with destruction of the mucocilliary apparatus and with interference and decrease of the function of pulmonary alveolar and intravascular macrophages. Bacterial pathogens often contribute to PRDC by activation of inflammation via enhanced cytokine responses. With recent advancements in pathogen detection methods, the importance of polymicrobial disease has become more evident, and identification of interactions of pathogens and their mechanisms of disease potentiation has become a topic of great interest. For example, combined infection of pigs with typically low pathogenic organisms like PCV2 and MHYO results in severe respiratory disease. Although the body of knowledge has advanced substantially in the last 15 years, much more needs to be learned about the pathogenesis and best practices for control of swine respiratory disease outbreaks caused by concurrent infection of two or more pathogens. This review discusses the latest findings on polymicrobial respiratory disease in pigs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control.

            Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein-Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infectious agents associated with respiratory diseases in 125 farrow-to-finish pig herds: a cross-sectional study.

              A study was carried out in 125 farrow-to-finish pig herds to assess the relationships between pathogens involved in respiratory disorders and to relate these findings to clinical signs of respiratory diseases and pneumonia and pleuritis at slaughter. Clinical examination and sampling were carried out on four different batches in each herd (pigs aged 4, 10, 16 and 22 weeks). Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, swine influenza viruses (SIV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) were detected by serological or PCR tests. Pneumonia-like gross lesions and pleuritis were scored at the slaughterhouse. The results indicate that the percentage of pigs PCR-positive for PCV2 at 4, 10 and 16 weeks old was associated with the percentage of pigs PCR-positive for M. hyopneumoniae at these ages. On the other hand, the percentage of pigs with antibodies against PRRSV at 10, 16 and 22 weeks was positively correlated with the percentage of pigs seropositive for M. hyopneumoniae at 22 weeks, with the percentage of pigs with antibodies against SIV H1N1 and SIV H1N2 and the percentage of pigs sero-positive for A. pleuropneumoniae serotype 2. The findings also indicate that, within the five studied pathogens, M. hyopneumoniae, PRRSV and SIV H1N1 are the major pathogens involved in pneumonia-like gross lesions even though PCV2 may play a role. A. pleuropneumoniae serotype 2, in association with PRRSV, is significantly associated with extensive pleuritis. Respiratory diseases could be significantly reduced by implementing measures including appropriate management practices to control these pathogens. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Veterinary Record
                Veterinary Record
                Wiley
                0042-4900
                2042-7670
                October 2022
                January 15 2022
                October 2022
                : 191
                : 7
                Affiliations
                [1 ]Clinic for Swine Centre for Clinical Veterinary Medicine, LMU Munich Oberschleißheim Germany
                [2 ]Ceva Tiergesundheit Duesseldorf Germany
                [3 ]Clinical Department for Farm Animals and Herd Management University of Veterinary Medicine Vienna Vienna Austria
                [4 ]Ceva Santé Animale Libourne France
                Article
                10.1002/vetr.1317
                35032397
                db3fdadf-911e-4742-a064-1d983042fcc5
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,966

                Cited by3

                Most referenced authors481