28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular investigation of Cryptosporidium and Giardia in pre- and post-weaned calves in Hubei Province, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The protistan pathogens Cryptosporidium and Giardia can cause significant intestinal diseases in animals and humans. Cattle, particularly calves, carrying these protists can be significant reservoirs for human infections and disease. However, little is known about the genetic make-up of Cryptosporidium and Giardia populations in cattle and other ruminants in some regions of China.

          Results

          In the present study, PCR-based tools were used to genetically characterise these protists in faecal samples from a total of 339 pre- and post-weaned calves from four distinct locations in Hubei Province using markers in the large ( LSU) or small ( SSU) subunits of nuclear ribosomal RNA genes. Cryptosporidium andersoni, C. bovis, C. ryanae and Giardia duodenalis assemblage E were detected in 0.6%, 10.9%, 4.1% and 22.6% of calves, respectively.

          Conclusions

          This study is the first to report the prevalence of Cryptosporidium and Giardia in pre- and post-weaned calves in Hubei Province, and encourages large-scale molecular studies of animals and humans, in an effort to better understand the epidemiology of these enteric pathogens in China.

          Electronic supplementary material

          The online version of this article (10.1186/s13071-017-2463-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

          Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zoonotic potential of Giardia.

            Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a common intestinal parasite of humans and mammals worldwide. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within G. duodenalis. To date eight major genetic groups (assemblages) have been identified, two of which (A and B) are found in both humans and animals, whereas the remaining six (C to H) are host-specific and do not infect humans. Sequence-based surveys of single loci have identified a number of genetic variants (genotypes) within assemblages A and B in animal species, some of which may have zoonotic potential. Multi-locus typing data, however, has shown that in most cases, animals do not share identical multi-locus types with humans. Furthermore, interpretation of genotyping data is complicated by the presence of multiple alleles that generate "double peaks" in sequencing files from PCR products, and by the potential exchange of genetic material among isolates, which may account for the non-concordance in the assignment of isolates to specific assemblages. Therefore, a better understanding of the genetics of this parasite is required to allow the design of more sensitive and variable subtyping tools, that in turn may help unravel the complex epidemiology of this infection. Copyright © 2013. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cryptosporidium species in humans and animals: current understanding and research needs.

              Cryptosporidium is increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20 Cryptosporidium species and genotypes that have been reported in humans, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with several Cryptosporidium species or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission of Cryptosporidium species, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for many Cryptosporidium species of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity of Cryptosporidium species and impact of climate change on the transmission of Cryptosporidium.
                Bookmark

                Author and article information

                Contributors
                fanyingying@webmail.hzau.edu.cn
                tao.wang1@unimelb.edu.au
                anson.koehler@unimelb.edu.au
                mhu@mail.hzau.edu.cn
                robinbg@unimelb.edu.au
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                25 October 2017
                25 October 2017
                2017
                : 10
                : 519
                Affiliations
                [1 ]ISNI 0000 0004 1790 4137, GRID grid.35155.37, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, , Huazhong Agricultural University, ; Wuhan, Hubei 430070 China
                [2 ]ISNI 0000 0001 2179 088X, GRID grid.1008.9, Department of Veterinary Biosciences, Melbourne Veterinary School, , The University of Melbourne, ; Parkville, VIC Australia
                Article
                2463
                10.1186/s13071-017-2463-3
                5657125
                29070070
                db3e7d73-9674-4711-a2ce-e74fd41afc12
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 September 2017
                : 9 October 2017
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Parasitology
                cryptosporidium,giardia,calves,pcr-based sequencing,nuclear ribosomal rna genes,china
                Parasitology
                cryptosporidium, giardia, calves, pcr-based sequencing, nuclear ribosomal rna genes, china

                Comments

                Comment on this article