4
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards quantitative metabarcoding of eukaryotic plankton: an approach to improve 18S rRNA gene copy number bias

      , , , ,
      Metabarcoding and Metagenomics
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plankton metabarcoding is increasingly implemented in marine ecosystem assessments and is more cost-efficient and less time-consuming than monitoring based on microscopy (morphological). 18S rRNA gene is the most widely used marker for groups’ and species’ detection and classification within marine eukaryotic microorganisms. These datasets have commonly relied on the acquisition of organismal abundances directly from the number of DNA sequences (i.e. reads). Besides the inherent technical biases in metabarcoding, the largely varying 18S rRNA gene copy numbers (GCN) among marine protists (ranging from tens to thousands) is one of the most important biological biases for species quantification. In this work, we present a gene copy number correction factor (CF) for four marine planktonic groups: Bacillariophyta, Dinoflagellata, Ciliophora miscellaneous and flagellated cells. On the basis of the theoretical assumption that ‘1 read’ is equivalent to ‘1 GCN’, we used the GCN median values per plankton group to calculate the corrected cell number and biomass relative abundances. The species-specific absolute GCN per cell were obtained from various studies published in the literature. We contributed to the development of a species-specific 18S rRNA GCN database proposed by previous authors. To assess the efficiency of the correction factor we compared the metabarcoding, morphological and corrected relative abundances (in cell number and biomass) of 15 surface water samples collected in the Belgian Coastal Zone. Results showed that the application of the correction factor over metabarcoding results enables us to significantly improve the estimates of cell abundances for Dinoflagellata, Ciliophora and flagellated cells, but not for Bacillariophyta. This is likely to due to large biovolume plasticity in diatoms not corresponding to genome size and gene copy numbers. C-biomass relative abundance estimations directly from amplicon reads were only improved for Dinoflagellata and Ciliophora. The method is still facing biases related to the low number of species GCN assessed. Nevertheless, the increase of species in the GCN database may lead to the refinement of the proposed correction factor.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

            The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ggplot2

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Metabarcoding and Metagenomics
                MBMG
                Pensoft Publishers
                2534-9708
                August 15 2022
                August 15 2022
                : 6
                Article
                10.3897/mbmg.6.85794
                db2cdade-08b3-454e-b4fa-9fe431cb5d87
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article