0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wildfire spreading prediction using multimodal data and deep neural network approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predicting wildfire spread behavior is an extremely important task for many countries. On a small scale, it is possible to ensure constant monitoring of the natural landscape through ground means. However, on the scale of large countries, this becomes practically impossible due to remote and vast forest territories. The most promising source of data in this case that can provide global monitoring is remote sensing data. Currently, the main challenge is the development of an effective pipeline that combines geospatial data collection and the application of advanced machine learning algorithms. Most approaches focus on short-term fire spreading prediction and utilize data from unmanned aerial vehicles (UAVs) for this purpose. In this study, we address the challenge of predicting fire spread on a large scale and consider a forecasting horizon ranging from 1 to 5 days. We train a neural network model based on the MA-Net architecture to predict wildfire spread based on environmental and climate data, taking into account spatial distribution features. Estimating the importance of features is another critical issue in fire behavior prediction, so we analyze their contribution to the model’s results. According to the experimental results, the most significant features are wind direction and land cover parameters. The F1-score for the predicted burned area varies from 0.64 to 0.68 depending on the day of prediction (from 1 to 5 days). The study was conducted in northern Russian regions and shows promise for further transfer and adaptation to other regions. This geospatial data-based artificial intelligence (AI) approach can be beneficial for supporting emergency systems and facilitating rapid decision-making.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Critical Review of Health Impacts of Wildfire Smoke Exposure

          Background: Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure. Objectives: We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations. Methods: We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings. Discussion: Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular end points. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure. Conclusions: Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible. Citation: Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334–1343; http://dx.doi.org/10.1289/ehp.1409277
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Post-wildfire soil erosion in the Mediterranean: Review and future research directions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of machine learning applications in wildfire science and management

              Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then, the field has rapidly progressed congruently with the wide adoption of machine learning (ML) methods in the environmental sciences. Here, we present a scoping review of ML applications in wildfire science and management. Our overall objective is to improve awareness of ML methods among wildfire researchers and managers, as well as illustrate the diverse and challenging range of problems in wildfire science available to ML data scientists. To that end, we first present an overview of popular ML approaches used in wildfire science to date and then review the use of ML in wildfire science as broadly categorized into six problem domains, including (i) fuels characterization, fire detection, and mapping; (ii) fire weather and climate change; (iii) fire occurrence, susceptibility, and risk; (iv) fire behavior prediction; (v) fire effects; and (vi) fire management. Furthermore, we discuss the advantages and limitations of various ML approaches relating to data size, computational requirements, generalizability, and interpretability, as well as identify opportunities for future advances in the science and management of wildfires within a data science context. In total, to the end of 2019, we identified 300 relevant publications in which the most frequently used ML methods across problem domains included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. As such, there exists opportunities to apply more current ML methods — including deep learning and agent-based learning — in the wildfire sciences, especially in instances involving very large multivariate datasets. We must recognize, however, that despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods such as deep learning requires a dedicated and sophisticated knowledge of their application. Finally, we stress that the wildfire research and management communities play an active role in providing relevant, high-quality, and freely available wildfire data for use by practitioners of ML methods.
                Bookmark

                Author and article information

                Contributors
                s.Illarionova@skoltech.ru
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 January 2024
                31 January 2024
                2024
                : 14
                : 2606
                Affiliations
                [1 ]Skolkovo Institute of Science and Technology, ( https://ror.org/03f9nc143) Moscow, Russia 121205
                [2 ]Faculty of Computational Mathematics and Cybernetics, Moscow State University, ( https://ror.org/010pmpe69) Moscow, Russia 119899
                [3 ]GRID grid.483955.6, ISNI 0000 0000 9766 3783, The National Crisis Management Center, , EMERCOM of Russia, ; Moscow, Russia 109012
                Article
                52821
                10.1038/s41598-024-52821-x
                10831103
                38297034
                db2ca6e8-3355-4329-b65c-c6b900f99b57
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 October 2023
                : 24 January 2024
                Funding
                Funded by: the Analytical center under the RF Government
                Award ID: subsidy agreement 000000D730321P5Q0002
                Award ID: Grant No. 70-2021-00145 02.11.2021
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                environmental sciences,natural hazards
                Uncategorized
                environmental sciences, natural hazards

                Comments

                Comment on this article