0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating the Role of Classical Ayurveda-Based Incineration Process on the Synthesis of Zinc Oxide Based Jasada Bhasma Nanoparticles and Zn 2+ Bioavailability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jasada bhasma (JB) is a zinc oxide-based Indian traditional Ayurveda-based herbo-metallic nanoparticle used for the treatment of zinc (Zn) deficiency and autoimmune and inflammatory disorders. JB is made by following the Ayurveda-based guidelines using zinc oxide (ZnO) as a raw material and going through 17 cycles of the high-temperature incineration and trituration process known as “Ma̅raṇa” in the presence of herbal decoctions prepared from the leaves of Azadirachta indica and Aloe vera gel. These cycles improve the purity of the parent material and transform its physicochemical properties, converting it into nanoparticles. However, there still exists a knowledge gap regarding the role of incineration in the physicochemical transformation of the Zn raw material into JB nanoparticles and the biological interaction of the final product. In the present study, the JB samples obtained during different Ma̅raṇa cycles were carefully studied for their physicochemical transformation using analytical methods such as powdered X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and dynamic light scattering (DLS). According to the XRD results, the Zn and oxygen molecules in hexagonal ZnO wurtzite crystals gradually realigned as a result of repeated heat treatments that caused lattice tension and crystal size reduction from 53.14 to 42.40 nm. A morphological transition from 1.5 μm rod shape to 31 nm in the JB particles can be seen using FESEM and SAXS analyses. The existence of 10 nm-sized nanoparticles in the finished product was confirmed by HRTEM. The presence of ZnO was confirmed in all samples by FTIR and Raman spectroscopies. Cell viability analysis showed an inhibitory concentration 50% of >1000 μg/mL for JB nanoparticles, revealing no adverse effects in human colon Caco-2 cells. A dose-dependent uptake and intracellular accumulation of JB nanoparticles were observed in Caco-2 cells using inductively coupled plasma-based mass spectroscopy (ICP–MS). Bioavailability of Zn 2+ ions (6% w/w) through JB dissolution in acidic pH 4.0 was observed, representing the stomach and intracellular lysosomal physiological conditions. Therefore, the study showed that the repeated incineration cycles produced biocompatible JB nanoparticles through the physicochemical transformation at molecular levels capable of delivering bioavailable Zn 2+ ions under physiological conditions. In conclusion, the medicinal properties of JB nanoparticles described in Ayurveda were found to originate from their small size and dissolution properties, formed through the classical incineration-based synthesis process.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Raman Effect in Zinc Oxide

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Zinc and its importance for human health: An integrative review

            Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Counting the zinc-proteins encoded in the human genome.

              Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, or for regulation of their activities or for structural purposes. Genome sequencing projects have provided a huge number of protein primary sequences, but, even though several different elaborate analyses and annotations have been enabled by a rich and ever-increasing portfolio of bioinformatic tools, metal-binding properties remain difficult to predict as well as to investigate experimentally. Consequently, the present knowledge about metalloproteins is only partial. The present bioinformatic research proposes a strategy to answer the question of how many and which proteins encoded in the human genome may require zinc for their physiological function. This is achieved by a combination of approaches, which include: (i) searching in the proteome for the zinc-binding patterns that, on their turn, are obtained from all available X-ray data; (ii) using libraries of metal-binding protein domains based on multiple sequence alignments of known metalloproteins obtained from the Pfam database; and (iii) mining the annotations of human gene sequences, which are based on any type of information available. It is found that 1684 proteins in the human proteome are independently identified by all three approaches as zinc-proteins, 746 are identified by two, and 777 are identified by only one method. By assuming that all proteins identified by at least two approaches are truly zinc-binding and inspecting the proteins identified by a single method, it can be proposed that ca. 2800 human proteins are potentially zinc-binding in vivo, corresponding to 10% of the human proteome, with an uncertainty of 400 sequences. Available functional information suggests that the large majority of human zinc-binding proteins are involved in the regulation of gene expression. The most abundant class of zinc-binding proteins in humans is that of zinc-fingers, with Cys4 and Cys2His2 being the most common types of coordination environment.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                09 January 2023
                24 January 2023
                : 8
                : 3
                : 2942-2952
                Affiliations
                []Drug Discovery and Development Division, Patanjali Research Institute , Haridwar, Uttarakhand249405, India
                []Department of Allied and Applied Sciences, University of Patanjali , Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand249405, India
                [§ ]Patanjali Yog Peeth (UK) Trust , 40 Lambhill Street, Kinning Park, GlasgowG41 1AU, United Kingdom
                []Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University , Sector-14, Chandigarh160014, India
                []Special Centre for Systems Medicine, Jawaharlal Nehru University , New Mehrauli Road, New Delhi, Delhi110067, India
                Author notes
                Author information
                https://orcid.org/0000-0001-8206-1402
                https://orcid.org/0000-0001-8509-0882
                Article
                10.1021/acsomega.2c05391
                9878631
                36713743
                db20ebc5-ec74-469d-8c5a-33ea26290653
                © 2023 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 August 2022
                : 27 December 2022
                Funding
                Funded by: Patanjali Research Foundation, doi NA;
                Award ID: NA
                Categories
                Article
                Custom metadata
                ao2c05391
                ao2c05391

                Comments

                Comment on this article