20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      thornado-hydro: a discontinuous Galerkin method for supernova hydrodynamics with nuclear equations of state

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes algorithms for non-relativistic hydrodynamics in the toolkit for high-order neutrino radiation hydrodynamics (thornado), which is being developed for multiphysics simulations of core-collapse supernovae (CCSNe) and related problems with Runge-Kutta discontinuous Galerkin (RKDG) methods. More specifically, thornado employs a spectral type nodal collocation approximation, and we have extended limiters - a slope limiter to prevent non-physical oscillations and a bound-enforcing limiter to prevent non-physical states - from the standard RKDG framework to be able to accommodate a tabulated nuclear equation of state (EoS). To demonstrate the efficacy of the algorithms with a nuclear EoS, we first present numerical results from basic test problems in idealized settings in one and two spatial dimensions, employing Cartesian, spherical-polar, and cylindrical coordinates. Then, we apply the RKDG method to the problem of adiabatic collapse, shock formation, and shock propagation in spherical symmetry, initiated with a 15 solar mass progenitor. We find that the extended limiters improve the fidelity and robustness of the RKDG method in idealized settings. The bound-enforcing limiter improves robustness of the RKDG method in the adiabatic collapse application, while we find that slope limiting in characteristic fields is vulnerable to structures in the EoS - more specifically, in the phase transition from nuclei and nucleons to bulk nuclear matter. The success of these applications marks an important step toward applying RKDG methods to more realistic CCSN simulations with thornado in the future.

          Related collections

          Author and article information

          Journal
          09 November 2020
          Article
          2011.04680
          db18e102-ea76-475f-9f13-bcffc073efb6

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          astro-ph.HE physics.comp-ph

          Mathematical & Computational physics,High energy astrophysical phenomena

          Comments

          Comment on this article